A fundamental technical hurdle in systems neurophysiology has been to record the activity of individual neurons in situ while using microstimulation to activate inputs or outputs. Stimulation artifact at the recording electrode has largely limited the usefulness of combined stimulating and recording to using single stimulation pulses (e.g., orthodromic and antidromic activation) or to presenting brief trains of pulses to look for transient responses (e.g., paired-pulse stimulation). Using an adaptive filter, we have developed an on-line method that allows continuous extracellular isolation of individual neuron spikes during sustained experimental microstimulation. We show that the technique accurately and robustly recovers neural spikes from stimulation-corrupted records. Moreover, we demonstrate that the method should generalize to any recording situation where a stereotyped, triggered transient might obscure a neural event.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBME.2003.816077 | DOI Listing |
J Psychiatr Res
January 2025
Department of Psychology, University of Wisconsin Milwaukee, USA. Electronic address:
Obsessive-Compulsive Disorder (OCD) is a heterogenous mental health condition that causes significant impairment and is often associated with poor treatment outcomes. The aim of the current study was to examine the association between electroencephalographic (EEG) oscillatory power during inhibitory task performance and obsessive-compulsive symptoms (OCS). OCS was assessed using the well-established the Autogenous-Reactive Obsession (AO-RO) model as the main framework to address its heterogeneous clinical manifestations.
View Article and Find Full Text PDFBiomed Eng Online
December 2024
Delta Tooling Co., LTD, 1-2-10, Yanoshinmachi, Aki-Ku, Hiroshima, 736-0084, Japan.
Background: Spinal cord injury (SCI) often leads to the loss of urinary sensation, making urination difficult. In a previous experiment involving six healthy participants, we measured heartbeat-induced acoustic pulse waves (HAPWs) at the mid-back, calculated time-series power spectra of heart rate gradients at three ultralow/very low frequencies, distinguished and formulated waveform characteristics (one characteristic for each power spectrum, nearly uniform across participants) at times of increased urine in the bladder and heightened urges to urinate, and developed an algorithm with five of these power spectra to identify when urination is needed by extracting the waveform portion (continuous timepoints) where all of the characteristics were consistent with the formulated characteristics. The objective of this study was to verify the validity of the algorithm fed with data from measured HAPW of participants with SCI and to adapt the algorithm for these individuals.
View Article and Find Full Text PDFCommun Biol
November 2024
Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, USA.
Current tests of hearing fail to diagnose pathologies in ~10% of patients seeking help for hearing difficulties. Neural ensemble responses to perceptually relevant cues in the amplitude envelope, termed envelope following responses (EFR), hold promise as an objective diagnostic tool to probe these 'hidden' hearing difficulties. But clinical translation is impeded by current measurement approaches involving static amplitude modulated (AM) tones, which are time-consuming and lack optimal spectrotemporal resolution.
View Article and Find Full Text PDFPhys Chem Chem Phys
November 2024
School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
The most common lattice defect in high-pressure high-temperature (HPHT) diamonds is the nitrogen substitution (P1) center. This is a paramagnetic defect with a single unpaired electron spin coupled to a N nuclear spin forming an = 1/2, = 1 spin system. While P1 centers have been studied by electron paramagnetic resonance (EPR) spectroscopy for decades, only recently did their behavior at ultra-high (>12 T) magnetic fields become of interest.
View Article and Find Full Text PDFJ Neural Eng
October 2024
Department of Bioengineering and Computing, Imperial College London, London W12 0BZ, United Kingdom.
Cortical beta (13-30 Hz) and gamma (30-60 Hz) oscillations are prominent in the motor cortex and are known to be transmitted to the muscles despite their limited direct impact on force modulation. However, we currently lack fundamental knowledge about the saliency of these oscillations at spinal level. Here, we developed an experimental approach to examine the modulations in high-frequency inputs to motoneurons under different motor states while maintaining a stable force, thus constraining behaviour.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!