A lipopolysaccharide (LPS) dose-response study in an experimental baboon endotoxemia model is presented to define the relevance of this model compared with human endotoxemia. We describe acute and subacute endotoxemic models in baboons, the first evoked by bolus injection of LPS (1 mg, 0.1 mg, or 4 ng per kg of Escherichia coli LPS), and the second evoked by infusion of 1.5 mg/kg of E. coli LPS over 30 min. We report the analysis of LPS clearance, the kinetics of tumor necrosis factor, interleukin (IL) 6, and IL-8 expression on the protein as well as on the mRNA level, change in blood counts (white and red blood cells and circulating platelets), and several hemodynamic parameters such as temperature, cardiac index, heart rate, and mean arterial pressure via multiple sampling. The resulting data are compared with previously published human data. Our results show that the LPS-induced kinetics of cytokine release, as well as of hemodynamic and hematologic changes in baboons, were similar to those observed in humans, even though baboons required a approximately 104-fold higher initial LPS dose to develop these manifestations. Hence, we demonstrate that endotoxemia in baboons qualitatively, yet not quantitatively, resembles endotoxemia in humans and, therefore, proves to constitute a useful model for studying the pathogenic mechanisms of sepsis in relation to humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/01.shk.0000090843.66556.74 | DOI Listing |
Front Mol Biosci
January 2025
Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
Introduction: Chronic inflammation caused by infections has a significant negative impact on the reproductive system and impairs fertility. The corpus luteum (CL) plays a central role not only in regulating the ovary cycle, but also in implantation of the embryo and maintenance of early pregnancy through the secretion of progesterone. Understanding the intricate interplay between inflammatory processes and reproductive organ's function is crucial for the development of effective therapeutic strategies to alleviate reproductive disorders and improve fertility.
View Article and Find Full Text PDFPLoS Biol
January 2025
Microbial Molecular Evolution Group, Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany.
Bacteriophages infect gram-negative bacteria by attaching to molecules present on the bacterial surface, often lipopolysaccharides (LPS). Modification of LPS can lead to resistance to phage infection. In addition, LPS modifications can impact antibiotic susceptibility, allowing for phage-antibiotic synergism.
View Article and Find Full Text PDFGut Microbes
December 2025
Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China.
Protein glycosylation has been considered as a fundamental phenomenon shared by all domains of life. In , glycosylation of flagellins A and B with pseudaminic acid have been rigorously confirmed and shown to be essential for flagella assembly and bacterial colonization. In addition to flagellins, several other proteins including RecA, AlpA/B, and BabA/B in have also been reported to be glycosylated and to be dependent on the lipopolysaccharide (LPS) biosynthetic pathway.
View Article and Find Full Text PDFSci Rep
January 2025
Aerosol Technology Laboratory, Biological and Agricultural Engineering Department, Texas A&M University, College Station, TX, 77843, USA.
Gram-negative bacteria pose an increased threat to public health because of their ability to evade the effects of many antimicrobials with growing antibiotic resistance globally. One key component of gram-negative bacteria resistance is the functionality and the cells' ability to repair the outer membrane (OM) which acts as a barrier for the cell to the external environment. The biosynthesis of lipids, particularly lipopolysaccharides, or lipooligosaccharides (LPS/LOS) is essential for OM repair.
View Article and Find Full Text PDFVet Res Commun
January 2025
Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta N 36 Km 601, Río Cuarto City, 5800, Córdoba, Argentina.
Post-weaning diarrhea (PWD) is a major concern for pig producers, as stress and early weaning increase susceptibility to enteropathogens like enterotoxigenic Escherichia coli (ETEC) and Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!