Synthesis of a novel histidine analogue and its efficient incorporation into a protein in vivo.

Protein Eng

Department of Chemistry and Biotechnology, School of Engineering, University of Tokyo, 7-3-1 Hongo, Tokyo 113-8656, Japan.

Published: September 2003

Proteins containing unnatural amino acids have immense potential in biotechnology and medicine. We prepared several histidine analogues including a novel histidine analogue, beta-(1,2,3-triazol-4-yl)-DL-alanine. These histidine analogues were assayed for translational activity in histidine-auxotrophic Escherichia coli strain UTH780. We observed that several histidine analogues, including our novel histidine analogue, were efficiently incorporated into the protein in vivo; however, other analogues were rejected. These results suggest that the hydrogen atom at a specific position seriously affects incorporation.

Download full-text PDF

Source
http://dx.doi.org/10.1093/protein/gzg084DOI Listing

Publication Analysis

Top Keywords

novel histidine
12
histidine analogue
12
histidine analogues
12
protein vivo
8
analogues including
8
including novel
8
histidine
6
synthesis novel
4
analogue efficient
4
efficient incorporation
4

Similar Publications

The process of regenerating bone injuries in diabetic presents significant challenges because lysine oxidase (LOX), a key catalytic enzyme for collagen cross-linking, is inhibited in hyperglycemia. The supplementation of LOX is constrained by inadequate sources and diminished enzymatic activity, necessitating the development of effective alternatives for enhancing bone regeneration in diabetes. Herein, we reported a lysyl oxidase nanozyme (LON), derived from the catalytic domain of LOX.

View Article and Find Full Text PDF

Background: Starch is the most abundant carbohydrate in maize grains, serving as a primary energy source for both humans and animals, and playing a crucial role in various industrial applications. Increasing the starch content of maize grains is beneficial for improving the grain yield and quality. To gain insight into the genetic basis of starch content in maize kernels, a multiparent population (MPP) was constructed and evaluated for starch content in three different environments.

View Article and Find Full Text PDF

Palladium nanoparticles were supported on L-H-functionalized KIT-6 (KIT-6@L-H-Pd) and evaluated using various characterization techniques such as TGA, FT-IR, SEM, XRD, EDS, and BET. KIT-6@L-H-Pd showed excellent catalytic performance as a recyclable nanocatalyst for the oxidation of sulfides to sulfoxides and the amination of aryl halides. This approach offers multiple benefits, including the use of readily available and cost-effective materials, a straightforward procedure, short reaction durations, high yields, and a catalyst that is easy to separate and reuse.

View Article and Find Full Text PDF

Disordered proteins and domains are ubiquitous throughout the proteome of human cell types, yet the biomolecular sciences lack effective tool compounds and chemical strategies to study this class of proteins. In this context, we introduce a novel covalent tool compound approach that combines proximity-enhanced crosslinking with histidine trapping. Utilizing a maleimide-cyclohexenone crosslinker for efficient cysteine-histidine crosslinking, we elucidated the mechanism of this dual-reactive tool compound class.

View Article and Find Full Text PDF

The necrosis of pancreatic acinar cells is a key molecular event in the progression of acute pancreatitis (AP), with disturbances in mitochondrial energy metabolism considered to be a direct causative factor of acinar cell necrosis. Histidine triad nucleotide-binding protein 2 (HINT2) has been implicated in the development of various diseases, whereas its involvement in the progression of AP remains unclear. This study aims to investigate the role of HINT2 in AP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!