Local protein synthesis in a cell represents an elegant mechanism to achieve important biological phenomena such as cell migration, body axis formation during embryonic development and establishment of cell polarity. A prerequisite to studying translation in a restricted cellular compartment is the ability to unambiguously discriminate between proteins that arise through local protein synthesis and those that reach the site of interest by diffusion or transport. To tackle this problem, we set up a green fluorescent protein (GFP)-based reporter system that allows one to uncouple the translation of reporter gene mRNA from its subcellular localization. The system is based on the iron-responsive element, which regulates the translation of both endogenous ferritin and transferrin transcripts in response to changes in iron concentration. Translation of the reporter messenger RNA (mRNA) is thus dependent on iron in the medium; both its transcription and localization, however, are unaffected. Known targeting sequences can be used to direct the mRNA transcript to a subcellular compartment of interest. For instance, the full-length 3'-untranslated region of calcium/calmodulin-dependent protein kinase IIalpha mRNA can be added to the construct, after the stop codon of the GFP sequence, to selectively target the transcript into the dendrites of transiently transfected hippocampal neurons. This novel fluorescent assay will allow us to address a number of important biological questions in living mammalian cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/stke.2003.204.pl12 | DOI Listing |
Pharmaceuticals (Basel)
December 2024
Department of Life Science, College of Science and General Studies, Alfaisal University, Riyadh 11533, Saudi Arabia.
The hallmark of Alzheimer's disease (AD) is the buildup of amyloid-β (Aβ), which is produced when the amyloid precursor protein (APP) misfolds and deposits as neurotoxic plaques in the brain. A functional iron responsive element (IRE) RNA stem loop is encoded by the APP 5'-UTR and may be a target for regulating the production of Alzheimer's amyloid precursor protein. Since modifying Aβ protein expression can give anti-amyloid efficacy and protective brain iron balance, targeted regulation of amyloid protein synthesis through modulation of 5'-UTR sequence function is a novel method for the prospective therapy of Alzheimer's disease.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Pathophysiology, School of Basic Medical Sciences, The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, State Key Laboratory of Esophageal, Cancer Prevention and Treatment, Provincial Cooperative Innovation Center for Cancer Chemoprevention, China-US (Henan) Hormel Cancer Institute, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
Esophageal squamous cell carcinoma (ESCC) accounts for about 90% of esophageal cancer cases. The lack of effective therapeutic targets makes it difficult to improve the overall survival of patients with ESCC. Reticulon 4 Interacting Protein 1 (RTN4IP1) is a novel mitochondrial oxidoreductase.
View Article and Find Full Text PDFCurr Obes Rep
January 2025
Department of Endocrinology and Metabolism, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China.
Purpose Of Review: Review the latest data regarding the intersection of adipose tissue (AT) and iron to meet the needs of AT metabolism and the progression of related diseases.
Recent Findings: Iron is involved in fundamental biological metabolic processes and is precisely fine-tuned within the body to maintain cellular, tissue and even systemic iron homeostasis. AT not only serves as an energy storage depot but also represents the largest endocrine organ in the human body, maintaining systemic metabolic homeostasis.
Redox Biol
November 2024
Cyclica Inc., 207 Queens Quay W Suite 420, Toronto, ON, M5J 1A7, Canada.
Despite the vital role of iron and vulnerability of iron metabolism in disease states, it remains largely unknown whether chemicals interacting with cellular proteins are responsible for perturbation of iron metabolism. We previously demonstrated that cisplatin was an inhibitor of the iron regulatory system by blocking IRP2 (iron regulatory protein 2) binding to an iron-responsive element (IRE) located in the 3'- or 5'-UTR (untranslated region) of key iron metabolism genes such as transferrin receptor 1 (TfR1) and ferritin mRNAs. To guide the development of new chemical probes to modulate the IRP-IRE regulatory system, we used an artificial intelligence (AI)-based ligand design and screened a chemical library composed of cysteine-reactive warheads.
View Article and Find Full Text PDFOrphanet J Rare Dis
November 2024
Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Medical Genetics Institute of Henan Province, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450000, China.
Background: Cellular iron metabolism is essential for maintaining various biological processes in organisms, and this is influenced by the function of iron-responsive element-binding protein 2 (IRP2), encoded by the IREB2 gene. Since 2019, three cases of a genetic neurodegenerative syndrome resulting from compound heterozygous mutations in IREB2 have been documented, highlighting the crucial role of IRP2 in regulating iron metabolism homeostasis. This study aims to investigate the molecular basis in a single proband born to non-consanguineous healthy parents, presenting with severe psychomotor developmental abnormalities and microcytic anemia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!