Objective: To evaluate the effect of bone morphogenetic protein (BMP) on the biological behavior of bone marrow stem cells (BMSCs) of rabbits.

Methods: BMP was either enwrapped or not in the microspheres made of chitosan and sodium alginate, and the biocompatibilities of the composites were examined by means of cell culture. The BMSCs were cultured with the two kinds of microspheres respectively, and the cell extension rate, proliferation, alkaline phosphatase activity and Coomassie blue staining of the cells were assayed.

Results: Inhibition of BMSC proliferation did not occur in response to in vitro culture with the microspheres, but alkaline phosphatase activity and D(lambda) values of Coomassie blue staining increased significantly in the cells cultured with BMP microspheres.

Conclusion: BMP can increase the osteogenic capacity of BMSCs in vitro with the microspheres made of chitosan and sodium alginate as the carrier.

Download full-text PDF

Source

Publication Analysis

Top Keywords

bone morphogenetic
8
morphogenetic protein
8
biological behavior
8
bone marrow
8
marrow stem
8
microspheres chitosan
8
chitosan sodium
8
sodium alginate
8
alkaline phosphatase
8
phosphatase activity
8

Similar Publications

Background: Apolipoprotein E4 (E4) is the strongest genetic risk factor for sporadic Alzheimer's Disease (AD), and aging is the greatest overall risk factor for AD. Many cellular and molecular changes occur within the brain throughout aging, one of which being the increased bone morphogenetic protein 4 (BMP4) signaling. As APOE and BMPs are known to interact in non-neuronal organs, we hypothesized that enhanced BMP signaling in the brain may interact with APOE in a genotype-dependent manner to initiate or exacerbate neuropathological cascades relevant to AD.

View Article and Find Full Text PDF

Background: Aging is the most significant risk factor for neurodegenerative tauopathies, including Alzheimer's disease (AD), frontotemporal dementia (FTD), progressive supranuclear palsy (PSP), and others. However, no specific age-related molecular change in the brain has been identified that leads to disease onset and progression. We have found age-related increases in bone morphogenic protein (BMP) signaling in both human and mouse brains.

View Article and Find Full Text PDF

Role of sclerostin in mastocytosis bone disease.

Sci Rep

January 2025

Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Staszica Street 11, 20-081, Poland.

Mastocytosis is a heterogeneous group of disorders, characterized by accumulation of clonal mast cells which can infiltrate several organs, most often spine (70%). The pathogenesis of mastocytosis bone disease is poorly understood. The main aim of the study was to investigate whether neoplastic mast cells may be the source of sclerostin and whether there is an association between sclerostin and selected bone remodeling markers with mastocytosis related bone disease.

View Article and Find Full Text PDF

Bone morphogenetic proteins are essential for bone regeneration/fracture healing but can also induce heterotopic ossification (HO). Understanding accessory factors modulating BMP signaling would provide both a means of enhancing BMP-dependent regeneration while preventing HO. This study focuses on the ability of the collagen receptor, discoidin domain receptor 2 (DDR2), to regulate BMP activity.

View Article and Find Full Text PDF

This review examines intrinsic and extrinsic augmentation techniques for uniting hand and upper extremity fractures, including bone morphogenic proteins (BMPs), platelet-rich plasma (PRP), low-intensity pulsed ultrasound (LIPUS), and pulsed electromagnetic fields (PEMF). While BMPs, PRP, LIPUS, and PEMF show potential in accelerating bone healing and reducing nonunion rates, their clinical adoption is limited by high costs and inconsistent results. This paper focuses on understanding the efficacy of these techniques, their drawbacks, and potential next steps for the field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!