Aplidine, a cyclic peptide, from the tunicate Aplidium albican, prevents the in vitro aggregation into beta-sheet containing fibrils of the prion peptide 106-126 when co-incubated in a 1:1 molar ratio. The blocking of fibril formation induced by Aplidine has clear sequence specificity, being much stronger for the 106-126 prion peptide than for the beta-amyloid 25-35 peptide. In addition to the known ability of Aplidine to cross the plasmatic membrane, these results indicate that Aplidine is a potential leading compound for the development of therapeutic blockers of prion aggregation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbadis.2003.08.003 | DOI Listing |
Biomolecules
November 2024
Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.
Regarding Alzheimer's disease (AD), specific neuronal populations and brain regions exhibit selective vulnerability. Understanding the basis of this selective neuronal and regional vulnerability is essential to elucidate the molecular mechanisms underlying AD pathology. However, progress in this area is currently hindered by the incomplete understanding of the intricate functional and spatial diversity of neuronal subtypes in the human brain.
View Article and Find Full Text PDFCurr Opin Neurol
February 2025
Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.
Purpose Of Review: Cerebral amyloid angiopathy (CAA) is a common brain disorder among the elderly and individuals with Alzheimer's disease, where accumulation of amyloid-ß can lead to intracerebral hemorrhage and dementia. This review discusses recent developments in understanding the pathophysiology and phenotypes of CAA.
Recent Findings: CAA has a long preclinical phase starting decades before symptoms emerge.
J Mol Graph Model
March 2025
Department of Chemistry, Faculty of Science and Technology, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
The human prion protein gene (PRNP) consists of two common alleles that encode either methionine or valine residues at codon 129. Polymorphism at codon 129 of the prion protein (PRNP) gene is closely associated with genetic variations and susceptibility to specific variants of prion diseases. The presence of these different alleles, known as the PRNP codon 129 polymorphism, plays a significant role in disease susceptibility and progression.
View Article and Find Full Text PDFAnn Clin Transl Neurol
December 2024
Neurology Department, Albacete Universitary Hospital, Albacete, Spain.
Iatrogenic cerebral amyloid angiopathy, a disease caused by contact with neurosurgical material or human growth hormone contaminated by beta-amyloid peptide (Aβ), has a prion-like transmission mechanism. We present a series of three patients under 55 years of age who underwent cranial surgery. All of them developed multiple cerebral hemorrhages, transient focal neurological deficits, and/or cognitive impairment after 3-4 decades.
View Article and Find Full Text PDFACS Chem Neurosci
December 2024
Department of Chemistry, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico.
Alzheimer's disease (AD) is the most common form of dementia worldwide. AD brains are characterized by the accumulation of amyloid-β peptides (Aβ) that bind Cu and have been associated with several neurotoxic mechanisms. Although the use of copper chelators to prevent the formation of Cu-Aβ complexes has been proposed as a therapeutic strategy, recent studies show that copper is an important neuromodulator that is essential for a neuroprotective mechanism mediated by Cu binding to the cellular prion protein (PrP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!