CaMKII (Ca2+/calmodulin-dependent protein kinase II) is expressed in high concentrations in the brain and is found enriched in the postsynaptic densities. The enzyme is activated by the binding of calmodulin to the autoregulatory domain in the presence of high levels of intracellular Ca2+, which causes removal of auto-inhibition from the N-terminal catalytic domain. Knowledge of the 3D (three-dimensional) structure of this enzyme at atomic resolution is restricted to the association domain, a region at the extreme C-terminus. The catalytic domain of CaMKII shares high sequence similarity with CaMKI. The 3D structure of the catalytic core of CaMKI comprises ATP- and substrate-binding regions in a cleft between two distinct lobes, similar to the structures of all protein kinases solved to date. Mutation of Glu-60, a residue in the ATP-binding region of CaMKII, to glycine exerts different effects on phosphorylation of two peptide substrates, syntide and NR2B ( N -methyl-D-aspartate receptor subunit 2B) 17-mer. Although the mutation caused increases in the Km values for phosphorylation for both the peptide substrates, the effect on the kcat values for each was different. The kcat value decreased in the case of syntide, whereas it increased in the case of the NR2B peptide as a result of the mutation. This resulted in a significant decrease in the apparent kcat/Km value for syntide, but the change was minimal for the NR2B peptide. These results indicate that different catalytic mechanisms are employed by the kinase for the two peptides. Molecular modelling suggests structural changes are likely to occur at the peptide-binding pocket in the active state of the enzyme as a consequence of the Glu-60-->Gly mutation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1223949PMC
http://dx.doi.org/10.1042/BJ20030741DOI Listing

Publication Analysis

Top Keywords

peptide substrates
12
atp-binding region
8
ca2+/calmodulin-dependent protein
8
protein kinase
8
catalytic domain
8
phosphorylation peptide
8
nr2b peptide
8
peptide
5
influence mutation
4
mutation atp-binding
4

Similar Publications

Identification of MORF4L1 as an endogenous substrate of CRBN and its potential role as a therapeutic target in cancer.

Sci Rep

January 2025

Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.

The ubiquitin-proteasome system (UPS) is essential for cellular homeostasis, regulating the degradation of proteins involved in key processes such as cell cycle, apoptosis, and DNA repair. Dysregulation of the UPS is implicated in hepatocellular carcinoma (HCC), contributing to tumor progression and therapeutic resistance. The cereblon (CRBN) E3 ubiquitin ligase complex is a crucial component of the UPS, particularly in modulating protein degradation in response to small-molecule modulators like thalidomide.

View Article and Find Full Text PDF

Pro-Arg, The Potential Anti-Diabetes Peptide, Screened from Almond by In-Silico Analysis.

Plant Foods Hum Nutr

January 2025

College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404100, China.

Insulin resistance was considered to be the most important clinical phenotype of type 2 diabetes (T2DM). Almond is a widely-consumed nut and long-term intake was beneficial to alleviating insulin resistance in patients with T2DM. Hence, screening of anti-diabetic peptides from almond proteins was feasible based on the effectiveness of peptides in the treatment of T2DM.

View Article and Find Full Text PDF

Palmitate potentiates the SMAD3-PAI-1 pathway by reducing nuclear GDF15 levels.

Cell Mol Life Sci

January 2025

Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.

Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.

View Article and Find Full Text PDF

The complex interaction between circadian rhythms and physiological functions is essential for maintaining human health. At the heart of this interaction lies the PERIOD proteins (PERs), pivotal to the circadian clock, influencing the timing of physiological and behavioral processes and impacting oxidative stress, immune functionality, and tumorigenesis. PER1 orchestrates the cooperation of the enzyme GPX1, modulating mitochondrial dynamics in sync with daily rhythms and oxidative stress, thus regulating the mechanisms managing energy substrates.

View Article and Find Full Text PDF

Hydrolyzing collagen by extracellular protease Hap of Aeromonas salmonicida: Turning chicken by-products into bioactive resources.

Food Chem

January 2025

State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China. Electronic address:

Collagen-rich meat processing by-products have potential utilization value. Extracellular protease Hap from meat-borne Aeromonas salmonicida has been identified as an ideal protease for hydrolyzing collagen. Here, to explore the possible application of Hap for giving chicken by-products a high added value, the hydrolysis ability and mechanism were investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!