Glucose metabolism in five healthy subjects fasted for 16 h was measured with a combination of [U-13C]glucose and 2H2O tracers. Phenylbutyric acid was also provided to sample hepatic glutamine for the presence of 13C-isotopomers derived from the incorporation of [U-13C]glucose products into the hepatic Krebs cycle. Glucose production (GP) was quantified by 13C NMR analysis of the monoacetone derivative of plasma glucose following a primed infusion of [U-13C]glucose and provided reasonable estimates (1.90 +/- 0.19 mg/kg/min with a range of 1.60-2.15 mg/kg/min). The same derivative yielded measurements of plasma glucose 2H-enrichment from 2H2O by 2H NMR from which the contribution of glycogenolytic and gluconeogenic fluxes to GP was obtained (0.87 +/- 0.14 and 1.03 +/- 0.10 mg/kg/min, respectively). Hepatic glutamine 13C-isotopomers representing multiply-enriched oxaloacetate and [U-13C]acetyl-CoA were identified as multiplets in the 13C NMR signals of the glutamine moiety of urinary phenylacetylglutamine, demonstrating entry of the [U-13C]glucose tracer into both oxidative and anaplerotic pathways of the hepatic Krebs cycle. These isotopomers contributed 0.1-0.2% excess enrichment to carbons 2 and 3 and approximately 0.05% to carbon 4 of glutamine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/nbm.826 | DOI Listing |
J Microencapsul
June 2012
CBIOS, Faculty of Science and Health Technologies, ULHT, Lisbon, Portugal.
The purpose of this study was to evaluate hepatic glucose metabolism of diabetic induced rats after a daily oral load of insulin nanoparticles over 2 weeks. After the 2-week treatment, an oral glucose tolerance test was performed with [U-¹³C] glucose and ²H₂O. Plasma glucose ²H and ¹³C enrichments were quantified and the contribution of glycogenolysis and gluconeogenesis to overall glucose production were estimated.
View Article and Find Full Text PDFJ Anim Sci
April 2006
Department of Animal and Poultry Science, University of Guelph, ON, N1G 2W1, Canada.
The major N-containing polymer compounds in the body include protein, RNA, and DNA. The endogenous gastrointestinal secretions as well as the portal-drained visceral and peripheral immune responses are basic physiological functions. Elevated endogenous secretions and immune activities, as affected by developmental stages, diets, and management factors, decrease the availability of dietary nutrients for peripheral muscle synthesis and deposition.
View Article and Find Full Text PDFNMR Biomed
June 2003
Medicine III, Transplantation Unit, University Hospital of Coimbra, 3049, Coimbra, Portugal.
Glucose metabolism in five healthy subjects fasted for 16 h was measured with a combination of [U-13C]glucose and 2H2O tracers. Phenylbutyric acid was also provided to sample hepatic glutamine for the presence of 13C-isotopomers derived from the incorporation of [U-13C]glucose products into the hepatic Krebs cycle. Glucose production (GP) was quantified by 13C NMR analysis of the monoacetone derivative of plasma glucose following a primed infusion of [U-13C]glucose and provided reasonable estimates (1.
View Article and Find Full Text PDFJ Biol Chem
August 2003
The Mary Nell and Ralph B. Rogers Magnetic Resonance Center, Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA.
The generally accepted metabolic concept that fructose 2,6-bisphosphate (Fru-2,6-P2) inhibits gluconeogenesis by directly inhibiting fructose 1,6-bisphosphatase is based entirely on in vitro observations. To establish whether gluconeogenesis is indeed inhibited by Fru-2,6-P2 in intact animals, a novel NMR method was developed using [U-13C]glucose and 2H2O as tracers. The method was used to estimate the sources of plasma glucose from gastric absorption of oral [U-13C]glucose, from gluconeogenesis, and from glycogen in 24-h fasted rats.
View Article and Find Full Text PDFDiabetes
April 1999
US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA.
Very low birth weight (VLBW) infants are dependent on total parenteral nutrition (TPN) to prevent hypoglycemia and provide a sufficient energy intake. However, diminished tolerance for parenteral glucose delivered at high rates frequently provokes hyperglycemia. We hypothesized that when their glucose supply is reduced to prevent hyperglycemia, VLBW infants can maintain normoglycemia via gluconeogenesis from glycerol and amino acids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!