Binding partners for the UL11 tegument protein of herpes simplex virus type 1.

J Virol

Department of Microbiology and Immunology, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania 17033, USA.

Published: November 2003

The product of the U(L)11 gene of herpes simplex virus type 1 (HSV-1) is a 96-amino-acid tegument protein that accumulates on the cytoplasmic face of internal membranes. Although it is thought to be important for nucleocapsid envelopment and egress, the actual function of this protein is unknown. Previous studies focused on the characterization of sequence elements within the UL11 protein that function in membrane binding and trafficking to the Golgi apparatus. Binding was found to be mediated by two fatty acyl groups (myristate and palmitate), while an acidic cluster and a dileucine motif were identified as being important for the recycling of UL11 from the plasma membrane to the Golgi apparatus. The goal of the experiments described here was to identify and characterize binding partners (viral or cellular) of UL11. Using both immunoprecipitation and glutathione S-transferase (GST) pull-down assays, we identified a 40-kDa protein that specifically associates with UL11 from infected Vero cells. Mutational analyses revealed that the acidic cluster and the dileucine motif are required for this association, whereas the entire second half of UL11 is not. In addition, UL11 homologs from pseudorabies and Marek's disease herpesviruses were also found to be capable of binding to the 40-kDa protein from HSV-1-infected cells, suggesting that the interaction is conserved among alphaherpesviruses. Purification and analysis of the 40-kDa protein by mass spectrometry revealed that it is the product of the U(L)16 gene, a virion protein reported to be involved in nucleocapsid assembly. Cells transfected with a UL16-green fluorescent protein expression vector produced a protein that was of the expected size, could be pulled down with GST-UL11, and accumulated in a Golgi-like compartment only when coexpressed with UL11, indicating that the interaction does not require any other viral products. These data represent the first steps toward elucidating the network of tegument proteins that UL11 links to membranes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC229364PMC
http://dx.doi.org/10.1128/jvi.77.21.11417-11424.2003DOI Listing

Publication Analysis

Top Keywords

40-kda protein
12
ul11
10
protein
10
binding partners
8
tegument protein
8
herpes simplex
8
simplex virus
8
virus type
8
golgi apparatus
8
acidic cluster
8

Similar Publications

Effect of Hyaluronan Molecular Weight on the Stability and Biofunctionality of Microfibers Assembled by Interfacial Polyelectrolyte Complexation.

ACS Appl Mater Interfaces

January 2025

3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-694 Barco, Guimarães, Portugal.

Nervous system disorders are characterized by a progressive loss of function and structure of neurons that ultimately leads to a decline in cognitive and motor functions. In this study, we used interfacial polyelectrolyte complexation (IPC) to produce fibers for neural tissue regeneration. IPC is a processing method that allows spinning of sensitive biopolymers.

View Article and Find Full Text PDF

Advancements in cryo-EM have stimulated a revolution in structural biology. Yet, for membrane proteins near the cryo-EM size threshold of approximately 40 kDa, including transporters and G-protein coupled receptors, the absence of distinguishable structural features makes image alignment and structure determination a significant challenge. Furthermore, resolving more than one protein conformation within a sample, a major advantage of cryo-EM, represents an even greater degree of difficulty.

View Article and Find Full Text PDF

Molecular insights into septin 2 protein in rohu (Labeo rohita): revealing expression dynamics, antimicrobial activity and functional characteristics.

Int J Biol Macromol

December 2024

National Referral Laboratory for Freshwater Fish Diseases, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (CIFA), Kausalyaganga, Bhubaneswar 751002, India. Electronic address:

Article Synopsis
  • Septins are GTP-binding proteins important for immune response, but not fully studied in fish.
  • The research involved cloning the septin 2 cDNA from rohu carp, revealing high similarity to a related fish species and showing its presence in various tissues.
  • The septin 2 gene was found to be upregulated in response to infections, and the produced recombinant protein provided protection against infections, suggesting its potential as a key player in fish antimicrobial defense.
View Article and Find Full Text PDF

Nuclear magnetic resonance (NMR) spectroscopy is an important technique for deriving the dynamics and interactions of macromolecules; however, characterizations of aromatic residues in proteins still pose a challenge. Here, we present a deep neural network (DNN), which transforms NMR spectra recorded on simple uniformly C-labeled samples to yield high-quality H-C correlation maps of aromatic side chains. Key to the success of the DNN is the design of NMR experiments that produce data with unique features to aid the DNN produce high-resolution spectra.

View Article and Find Full Text PDF

Pegfilgrastim, a 40 kDa PEGylated form of recombinant human granulocyte colony-stimulating factor (rhG-CSF), is a biotherapeutic protein used to treat chemotherapy-induced neutropenia. To ensure the product is safe and effective, stringent monitoring of product-related impurities, particularly those arising from oxidative degradation, is necessary. This study focuses on the isolation and characterization of oxidized variants in pegfilgrastim using a multi-step approach that includes method transfer to semi-preparative High-Performance Liquid Chromatography (HPLC), mass spectrometry, and an in vitro cell-based potency assay (CBPA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!