Human astroviruses have a positive-strand RNA genome, which contains three open reading frames (ORF1a, ORF1b, and ORF2). The genomic RNA is translated into two nonstructural polyproteins, nsp1a and nsp1ab, that contain sequences derived from ORF1a and from both ORF1a and ORF1b, respectively. Proteins nsp1a and nsp1ab are thought to be proteolytically processed to yield the viral proteins implicated in the replication of the virus genome; however, the intermediate and final products of this processing have been poorly characterized. To identify the cleavage products of the nonstructural polyproteins of a human astrovirus serotype 8 strain, antisera to selected recombinant proteins were produced and were used to analyze the viral proteins synthesized in astrovirus-infected Caco-2 cells and in cells transfected with recombinant plasmids expressing the ORF1a and ORF1b polyproteins. Pulse-chase experiments identified proteins of approximately 145, 88, 85, and 75 kDa as cleavage intermediates during the polyprotein processing. In addition, these experiments and kinetic analysis of the synthesis of the viral proteins identified polypeptides of 57, 20, and 19 kDa, as well as two products of around 27 kDa, as final cleavage products, with the 57-kDa polypeptide most probably being the virus RNA polymerase and the two approximately 27-kDa products being the viral protease. Based on the differential reactivities of the astrovirus proteins with the various antisera used, the individual polypeptides detected were mapped to the virus ORF1a and ORF1b regions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC229263 | PMC |
http://dx.doi.org/10.1128/jvi.77.21.11378-11384.2003 | DOI Listing |
Mikrobiyol Bul
October 2024
The University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Division of Clinical Virology, Groningen, Netherlands.
As the number of coronavirus diseases-2019 (COVID-19) cases have decreased and measures have started to be implemented at an individual level rather than in the form of social restrictions, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) still maintains its importance and has already taken its place in the spectrum of agents investigated in multiplex molecular test panels for respiratory tract infections in routine diagnostic use. In this study, we aimed to present mutation analysis and clade distribution of whole genome sequences from randomly selected samples that tested positive with SARS-CoV-2 specific real-time reverse transcription polymerase chain reaction (rRT-PCR) test at different periods of the pandemic in our laboratory with a commercial easy-to-use kit designed for next-generation sequencing systems. A total of 84 nasopharyngeal/oropharyngeal swab samples of COVID-19 suspected patients which were sent for routine diagnosis to the medical microbiology laboratory and detected as SARSCoV-2 RNA positive with rRT-PCR were randomly selected from different periods for sequence analysis.
View Article and Find Full Text PDFFront Public Health
September 2024
Center for Biological Research Margarita Salas, Spanish National Research Council (CSIC), Madrid, Spain.
Introduction: SARS-CoV-2 variants are defined by specific genome-wide mutations compared to the Wuhan genome. However, non-clade-defining mutations may also impact protein structure and function, potentially leading to reduced vaccine effectiveness. Our objective is to identify mutations across the entire viral genome rather than focus on individual mutations that may be associated with vaccine failure and to examine the physicochemical properties of the resulting amino acid changes.
View Article and Find Full Text PDFPlants (Basel)
August 2024
Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra CV-315, km 10.7, 46113 Moncada, Valencia, Spain.
Studies of the virome of olive trees with symptoms of leaf mottling by high-throughput sequencing (HTS) revealed the presence of a new virus. Full coding genome sequences of two isolates were determined and consisted of a single RNA segment of 16,516 nt and 16,489, respectively. The genomic organization contained 10 open reading frames (ORFs) from 5' to 3': ORF1a, ORF1b (RdRp), ORF2 (p22), ORF3 (p7), ORF4 (HSP70h), ORF5 (HSP90h), ORF6 (CP), ORF7 (p19), ORF8 (p12), ORF9 (p23) and ORF10 (p9).
View Article and Find Full Text PDFVet Sci
July 2024
Facultad de Ciencias de la Salud, Carrera de Medicina Veterinaria, Universidad de Las Américas (UDLA), Antigua Vía a Nayón S/N, Quito EC 170124, Ecuador.
Sci Total Environ
November 2024
School of Advance Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India; Department of Biological and Ecological Engineering, School of Engineering, Oregon State University, Corvallis, OR, USA.
Tracking new variants of SARS-CoV-2 is vital for managing COVID-19 spread and allocating resources. Domestic antigen testing has created surveillance gaps that make it hard to identify new viral variants. We conducted whole genome sequencing of wastewater viral genes from major and minor treatment facilities in Dehradun from March 2022 onwards.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!