Objective: To evaluate the potential cytotoxic effects of indocyanine green (ICG) on cultured human retinal pigment epithelium (RPE) and the resultant implications for macular hole surgery.

Methods: Human RPE cells were exposed to ICG in concentrations from 0.001 to 5 mg/mL. The exposure duration ranged from 5 minutes to 3 hours. Light microscopy, MTS viability assay, and calcein AM-ethidium homodimer 1 staining were used to evaluate the cytotoxic effects of ICG.

Results: The RPE cells incubated with up to 5 mg/mL of ICG for 5 minutes or less exhibited no morphologic change and no significant decrease in dehydrogenase activity. When RPE cells were exposed to 5 mg/mL of ICG for 10 minutes, 1 mg/mL of ICG for 20 minutes, or 0.01 mg/mL of ICG for 3 hours, cell morphologic features were altered, mitochondrial dehydrogenase activity decreased, and some cells were necrotic.

Conclusions: Indocyanine green caused cytotoxicity in cultured human RPE in a dose- and time-dependent manner. Cell death occurred by necrosis.

Clinical Relevance: Exposure of RPE cells to ICG concentrations up to 5 mg/mL for 5 minutes or less was not injurious; prolonged exposure to a low ICG concentration was toxic. Since ICG may be retained in the vitreous cavity for a lengthy period, thorough washout of ICG during macular hole surgery is required.

Download full-text PDF

Source
http://dx.doi.org/10.1001/archopht.121.10.1423DOI Listing

Publication Analysis

Top Keywords

rpe cells
16
mg/ml icg
16
indocyanine green
12
macular hole
12
icg minutes
12
icg
10
retinal pigment
8
pigment epithelium
8
implications macular
8
hole surgery
8

Similar Publications

Epithelial‒mesenchymal transition (EMT) in retinal pigment epithelial (RPE) cells is believed to play a key role in the pathogenesis of proliferative vitreoretinopathy (PVR). The ability of Hirudo to promote blood flow and dispel blood stasis may be related to its anti-EMT effects. Through the use of a network pharmacology method, the mechanism by which Hirudo treats PVR was investigated in this study, and the findings were confirmed through in vitro cellular tests.

View Article and Find Full Text PDF

Stargardt disease is a currently untreatable, inherited neurodegenerative disease that leads to macular degeneration and blindness due to loss-of-function mutations in the ABCA4 gene. We have designed a dual adeno-associated viral vector encoding a split-intein adenine base editor to correct the most common mutation in ABCA4 (c.5882G>A, p.

View Article and Find Full Text PDF

Senescent retinal pigment epithelial cells play a key role in neovascular age-related macular degeneration (nAMD); however, the mechanisms underlying the angiogenic ability of these cells remain unclear. Herein, we investigated the effects of the senescent adult retinal pigment epithelial cell line-19 (ARPE-19) on wound healing, cell migration and survival, and tube formation abilities of human umbilical vein endothelial cells (HUVECs). Additionally, we used Brown Norway rats to establish a laser-induced choroidal neovascularization (CNV) model for further nAMD-related studies.

View Article and Find Full Text PDF

Acute posterior multifocal placoid pigment epitheliopathy (APMPPE) is an exceptionally rare inflammatory disorder affecting choroid and retinal pigment epithelial (RPE) cells. Although recent studies suggest an immune-driven nature, the underlying etiology of APMPPE remains elusive. In this study, we conducted a comprehensive investigation on the peripheral blood mononuclear cells (PBMCs) profile of an APMPPE patient using single-cell RNA sequencing.

View Article and Find Full Text PDF

The retinal pigment epithelium (RPE) contributes to retinal homeostasis, and its metabolic dysfunction is implied in the development of retinal degenerative disease. The isoform M2 of pyruvate kinase (PKM2) is a key factor in cell metabolism, and its function may be affected by insulin-like growth factor 1 (IGF-1). This study aims to investigate the effect of IGF-1 on PKM2 modulation of RPE cells and whether co-treatment with klotho may preserve it.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!