Methylglyoxal is a reactive dicarbonyl compound endogenously produced mainly from glycolytic intermediates. Recent research indicates that methylglyoxal is a potent growth inhibitor and genotoxic agent. The antiproliferative activity of methylglyoxal has been investigated for pharmacological application in cancer chemotherapy. However, various cells are not equally sensitive to methylglyoxal toxicity. Therefore, it would be important to establish the cellular factors responsible for the different cell-type specific response to methylglyoxal injury, in order to avoid the risk of failure of a therapy based on increasing the intracellular level of methylglyoxal. To this purpose, we comparatively evaluated the signaling transduction pathway elicited by methylglyoxal in human glioblastoma (ADF) and neuroblastoma (SH-SY 5Y) cells. Results show that methylglyoxal causes early and extensive reactive oxygen species generation in both cell lines. However, SH-SY 5Y cells show higher sensitivity to methylglyoxal challenge due to a defective antioxidant and detoxifying ability that, preventing these cells from an efficient scavenging action, elicits extensive caspase-9 dependent apoptosis. These data emphasize the pivotal role of antioxidant and detoxifying systems in determining the grade of sensitivity of cells to methylglyoxal.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0891-5849(03)00438-6DOI Listing

Publication Analysis

Top Keywords

methylglyoxal
11
methylglyoxal injury
8
sh-sy cells
8
cells methylglyoxal
8
antioxidant detoxifying
8
cells
5
scavenging system
4
system efficiency
4
efficiency crucial
4
crucial cell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!