AI Article Synopsis

Article Abstract

According to the model proposed in previous papers [Pettigrew, G. W., Prazeres, S., Costa, C., Palma, N., Krippahl, L., and Moura, J. J. (1999) The structure of an electron-transfer complex containing a cytochrome c and a peroxidase, J. Biol. Chem. 274, 11383-11389; Pettigrew, G. W., Goodhew, C. F., Cooper, A., Nutley, M., Jumel, K., and Harding, S. E. (2003) Electron transfer complexes of cytochrome c peroxidase from Paracoccus denitrificans, Biochemistry 42, 2046-2055], cytochrome c peroxidase of Paracoccus denitrificans can accommodate horse cytochrome c and Paracoccus cytochrome c(550) at different sites on its molecular surface. Here we use (1)H NMR spectroscopy, analytical ultracentrifugation, molecular docking simulation, and microcalorimetry to investigate whether these small cytochromes can be accommodated simultaneously in the formation of a ternary complex. The pattern of perturbation of heme methyl and methionine methyl resonances in binary and ternary solutions shows that a ternary complex can be formed, and this is confirmed by the increase in the sedimentation coefficient upon addition of horse cytochrome c to a solution in which cytochrome c(550) fully occupies its binding site on cytochrome c peroxidase. Docking experiments in which favored binary solutions of cytochrome c(550) bound to cytochrome c peroxidase act as targets for horse cytochrome c and the reciprocal experiments in which favored binary solutions of horse cytochrome c bound to cytochrome c peroxidase act as targets for cytochrome c(550) show that the enzyme can accommodate both cytochromes at the same time on adjacent sites. Microcalorimetric titrations are difficult to interpret but are consistent with a weakened binding of horse cytochrome c to a binary complex of cytochrome c peroxidase and cytochrome c(550) and binding of cytochrome c(550) to the cytochrome c peroxidase that is affected little by the presence of horse cytochrome c in the other site. The presence of a substantial capture surface for small cytochromes on the cytochrome c peroxidase has implications for rate enhancement mechanisms which ensure that the two electrons required for re-reduction of the enzyme after reaction with hydrogen peroxide are delivered efficiently.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi034829cDOI Listing

Publication Analysis

Top Keywords

cytochrome peroxidase
40
horse cytochrome
24
cytochrome c550
24
cytochrome
23
peroxidase paracoccus
12
paracoccus denitrificans
12
peroxidase
10
electron transfer
8
transfer complexes
8
complexes cytochrome
8

Similar Publications

Dichlormid protect wheat from fomesafen residual injury by increasing PPO expression and the photosynthesis characterize.

Ecotoxicol Environ Saf

January 2025

College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China. Electronic address:

Fomesafen is a herbicide with long persistence in soil, causing damage to succeeding crops. Dichlormid is a widely used safener protecting maize from chloroacetanilide and thiocarbamate injury. We found that dichlormid treatment could restore the growth of wheat seedlings exposed to fomesafen stress.

View Article and Find Full Text PDF

Downregulation of the SREBP pathways and disruption of redox status by 25-hydroxycholesterol predispose cells to ferroptosis.

Free Radic Biol Med

January 2025

Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto, 610-0394, Japan. Electronic address:

Enzymatically formed side-chain oxysterols function as signaling molecules regulating cholesterol homeostasis and act as intermediates in the biosynthesis of bile acids. In addition to these physiological functions, an imbalance in oxysterol homeostasis has been implicated in pathophysiology. Cholesterol 25-hydroxylase (CH25H) and its product 25-hydroxycholesterol (25-OHC), also formed by autoxidation, are associated with amyotrophic lateral sclerosis.

View Article and Find Full Text PDF

Intracellular delivery of proteins has attracted significant interest in biological research and cancer treatment, yet it continues to face challenges due to the lack of effective delivery approaches. Herein, we developed an efficient strategy cationic α-helical polypeptide-mediated anionic proprotein delivery. The protein was reversibly modified with adenosine triphosphate dynamic covalent chemistry to prepare an anionic proprotein (A-protein) with abundant phosphate groups.

View Article and Find Full Text PDF

Co-metabolism of Norfloxacin by Chlorella pyrenoidosa: Carbon source effects, biotransformation mechanisms, and key driving genes.

J Hazard Mater

December 2024

SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou 510006, China.

Co-metabolism with appropriate carbon sources has been demonstrated to effectively enhance the removal of ubiquitous recalcitrant micropollutant by microalgae. However, the specific impacts of carbon sources on the co-metabolism of antibiotics by microalgae remain insufficiently explored. In this study, transcriptomics, gene network analysis, extracellular polymeric substances (EPS), and enzymatic activity involved in co-metabolic pathways of norfloxacin (NFX), were systematically evaluated to investigate the underlying biological mechanisms involved in NFX co-metabolism by Chlorella pyrenoidosa.

View Article and Find Full Text PDF

The multifunctional catalytic hemoglobin from the terebellid polychaete , also named dehaloperoxidase (DHP), utilizes the typical oxygen transport function in addition to four observed activities involved in substrate oxidation. The multifunctional ability of DHP is presently a rare observation, and there exists a limitation for how novel dehaloperoxidases can be identified from macrobenthic infauna. In order to discover more infaunal DHP-bearing candidates, we have devised a facilitated method for an accurate taxonomic identification that places visual and molecular taxonomic approaches in parallel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!