Does osmotic pressure stimulate assembly or disassembly of supramolecules in vesicles? Self-assembly was conceivable as intravesicular response to osmotic shrinking upon application of extravesicular overpressure, whereas disassembly was conceivable as a response to bilayer stress in hyperosmotic vesicles. Self-assembly of guanosine 5'-monophosphates (GMPs) into G-quartets was selected to investigate the nature of remote control of supramolecular chemistry within vesicles by osmotic pressure. Using circular dichroism spectroscopy to selectively detect G-quartets, we found that extravesicular overpressure stimulates intravesicular self-assembly, whereas underpressure stimulates disassembly. G-quartet self-assembly by osmotic pressure exhibited ion-selective metal-cation templation, as expected. The key conclusions are that supramolecular chemistry within vesicles is governed by vesicle shape rather than vesicle stress and that detection of osmotic pressure by CD spectroscopy is an interesting alternative to the commonly used methods based on fluorescence self-quenching.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chir.10290DOI Listing

Publication Analysis

Top Keywords

osmotic pressure
20
g-quartet self-assembly
8
self-assembly osmotic
8
remote control
8
extravesicular overpressure
8
supramolecular chemistry
8
chemistry vesicles
8
osmotic
6
pressure
5
pressure remote
4

Similar Publications

Entropy generation and water conservation in the mammalian nephron.

J Comp Physiol B

January 2025

Departamento de Fisiologia, Instituto de Biociências da Universidade de São Paulo, São Paulo, Brazil.

During the transition from fresh waters to terrestrial habitats, significant adaptive changes occurred in kidney function of vertebrates to cope with varying osmotic challenges. We investigated the mechanisms driving water conservation in the mammalian nephron, focusing on the relative contributions of active ion transport and Starling forces. We constructed a thermodynamic model to estimate the entropy generation associated with different processes within the nephron, and analyzed their relative importance in urine formation.

View Article and Find Full Text PDF

The characteristics of temperature-responsive ionic liquids on the integrated operational effectiveness of water reclamation from semiconductor wastewater using forward osmosis.

Chemosphere

December 2024

Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan, ROC; Center for Sustainability and Energy Technologies, Chang Gung University, Taoyuan 33323, Taiwan, ROC; Biochemical Technology R&D Center, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, ROC; Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan, ROC. Electronic address:

Large amounts of wastewater are produced from semiconductor manufacturing, and the production energy consumption has skyrocketed with its global demand in recent years. Forward osmosis (FO) provides unique merits in reclaiming the wastewater if suitable draw solutes with high water flux, low leakage, and limited energy requirement in regeneration are available. Two lower critical solution temperature-ionic liquids (LCST-ILs), tetrabutylphosphonium trimethylbenzensulfonate ([P][TMBS]) and tetrabutylphosphonium maleate ([P][Mal]) were synthesized and systematically assessed as recycled draw solutes in FO for the water reclamation from the wastewater of Si-ingot sawing.

View Article and Find Full Text PDF

This review focuses on the intricate water relationships between internal and external tissues in growing fruits within the framework of the epidermal growth control hypothesis. It considers the components of water potential, including turgor pressure and osmotic potential of both internal and external tissues, taking into account factors such as fruit growth rate, sugar accumulation, cell wall metabolism, and climacteric. It also examines the effects of environmental conditions, genetic factors, and physiological influences in modifying water relations.

View Article and Find Full Text PDF

The adverse effects of nanosilver on fish gills: A critical review on ecotoxicity and underlying mechanism.

Chemosphere

December 2024

Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China. Electronic address:

The environmental safety and health impacts of nanosilver have attracted much attention due to their continuous detection in water. Although the effects of nanosilver on aquatic organisms have been reported, the ecotoxicity and underlying mechanism of nanosilver in aquatic organisms are not fully understood. Fish gills are the primary target organs of pollutant exposure in aquatic environments, and is important to clarify the impact of nanosilver on aquatic organisms by systematically and comprehensively revealing the effect of nanosilver on fish gills.

View Article and Find Full Text PDF

Nuclear pore permeability and fluid flow are modulated by its dilation state.

Mol Cell

December 2024

Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany; Institute of Biochemistry, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany. Electronic address:

Changing environmental conditions necessitate rapid adaptation of cytoplasmic and nuclear volumes. We use the slime mold Dictyostelium discoideum, known for its ability to tolerate extreme changes in osmolarity, to assess which role nuclear pore complexes (NPCs) play in achieving nuclear volume adaptation and relieving mechanical stress. We capitalize on the unique properties of D.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!