Colorectal cancer (CRC) is the second leading cause of cancer death in the USA. Accumulation of beta-catenin protein is nearly ubiquitous in colon adenomas and cancers, presumably due to mutations in the APC or beta-catenin genes that inhibit proteasome-dependent degradation of beta-catenin protein. Substantial clinical, epidemiological, and animal evidence indicate that sulindac and other non-steroidal anti-inflammatory drugs (NSAIDs) prevent the development of CRC. The mechanisms by which sulindac exerts its potent growth inhibitory effects against colon tumor cells are incompletely understood, but down-regulation of beta-catenin has been suggested as one potential mechanism. The goal of this study was to determine the mechanism of beta-catenin protein down-regulation by sulindac metabolites. Treatment of human colon cancer cell lines with apoptotic concentrations of sulindac metabolites (sulindac sulfide, sulindac sulfone) induced a dose- and time-dependent inhibition of beta-catenin protein expression. Inhibition of proteasome activity with MG-132 partially blocked the ability of sulindac sulfide and sulindac sulfone to inhibit beta-catenin protein expression. Pretreatment with the caspase inhibitor z-VAD-fmk blocked morphological signs of apoptosis as well as caspase cleavage, and also partially prevented beta-catenin degradation by sulindac metabolites. These effects occurred in cells with bi-allelic APC mutation (SW480), with wild-type APC but mono-allelic beta-catenin mutation (HCT116) and in cells that lack expression of either COX-1 or -2 (HCT15). These results indicate that loss of beta-catenin protein induced by sulindac metabolites is COX independent and at least partially due to reactivation of beta-catenin proteasome degradation and partially a result of caspase activation during the process of apoptosis.

Download full-text PDF

Source

Publication Analysis

Top Keywords

beta-catenin protein
28
sulindac metabolites
20
beta-catenin
12
sulindac
11
proteasome-dependent degradation
8
degradation beta-catenin
8
human colon
8
colon cancer
8
sulindac sulfide
8
sulfide sulindac
8

Similar Publications

Research on bone substitutes for repairing bone defects has drawn increasing attention, and the efficacy of three-dimensional (3D) printed bioactive porous scaffolds for bone defect repair has been well documented. Our previous studies have shown that psoralen can promote osteogenesis by activating the Wnt/β-catenin and BMP/Smad signaling pathways and their crosstalk effects, and psoralen nanospheres have a good osteogenesis-promoting effect with low cytotoxicity. The Chinese medicine oyster shell powder, characterized by its porous structure, strong adsorption, and unique bioactivity, has potential in fracture-promoting repair materials.

View Article and Find Full Text PDF

Background: Patients with gastric cancer (GC) are prone to lymph node metastasis (LNM), which is an important factor for recurrence and poor prognosis of GC. Nowadays, more and more studies have confirmed that exosomes can participate in tumor lymphangiogenesis. An in-depth exploration of the pathological mechanism in the process of LNM in GC may provide effective targets and improve the diagnosis and treatment effect.

View Article and Find Full Text PDF

Dandelion extract suppresses the stem-like properties of triple-negative breast cancer cells by regulating CUEDC2/β-catenin/OCT4 signaling axis.

J Ethnopharmacol

January 2025

Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China. Electronic address:

Ethnopharmacological Relevance: Triple-negative breast cancer (TNBC) represents the most aggressive subtype of breast cancer, featuring a high proportion of cancer stem cells (CSCs) and the poorest clinical outcomes. Taraxacum mongolicum Hand. -Mazz.

View Article and Find Full Text PDF

Novel Hsp90α inhibitor inhibits HSV-1 infection by suppressing the Akt/β-catenin pathway.

Int J Antimicrob Agents

January 2025

School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China. Electronic address:

The prevalence of herpes simplex virus type 1 (HSV-1) infection and the emergence of drug-resistant HSV-1 strains posts a significant global health challenge, necessitating the urgent development of effective anti-HSV-1 drugs. As one of the most prevalent molecular chaperones, heat shock protein 90 α (Hsp90α) has been extensively demonstrated to regulate a range of viral infections, thus representing a promising antiviral target. In this study, we identified JD-13 as a novel Hsp90α inhibitor and explored its capability in inhibiting HSV-1 infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!