The protein TA0175 has a large number of sequence homologues, most of which are annotated as unknown and a few as belonging to the haloacid dehalogenase superfamily, but has no known biological function. Using a combination of amino acid sequence analysis, three-dimensional crystal structure information, and kinetic analysis, we have characterized TA0175 as phosphoglycolate phosphatase from Thermoplasma acidophilum. The crystal structure of TA0175 revealed two distinct domains, a larger core domain and a smaller cap domain. The large domain is composed of a centrally located five-stranded parallel beta-sheet with strand order S10, S9, S8, S1, S2 and a small beta-hairpin, strands S3 and S4. This central sheet is flanked by a set of three alpha-helices on one side and two helices on the other. The smaller domain is composed of an open faced beta-sandwich represented by three antiparallel beta-strands, S5, S6, and S7, flanked by two oppositely oriented alpha-helices, H3 and H4. The topology of the large domain is conserved; however, structural variation is observed in the smaller domain among the different functional classes of the haloacid dehalogenase superfamily. Enzymatic assays on TA0175 revealed that this enzyme catalyzed the dephosphorylation of phosphoglycolate in vitro with similar kinetic properties seen for eukaryotic phosphoglycolate phosphatase. Activation by divalent cations, especially Mg2+, and competitive inhibition behavior with Cl- ions are similar between TA0175 and phosphoglycolate phosphatase. The experimental evidence presented for TA0175 is indicative of phosphoglycolate phosphatase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2795321PMC
http://dx.doi.org/10.1074/jbc.M306054200DOI Listing

Publication Analysis

Top Keywords

phosphoglycolate phosphatase
20
phosphatase thermoplasma
8
thermoplasma acidophilum
8
haloacid dehalogenase
8
dehalogenase superfamily
8
crystal structure
8
ta0175 phosphoglycolate
8
ta0175 revealed
8
large domain
8
domain composed
8

Similar Publications

Article Synopsis
  • Phosphoglycolate phosphatase (PGPase) is an important enzyme in photosynthetic organisms that helps process phosphoglycolate, a byproduct of Rubisco, potentially affecting the Calvin cycle.
  • Three PGPase genes were isolated, cloned, and overexpressed from a specific organism, and their expression was analyzed under varying ammonium levels.
  • The study found that all three genes produce active PGPases, with two of them being responsive to nitrogen levels and upregulated when ammonium is low, while PGPase presents mainly in three forms across higher plants and algae.
View Article and Find Full Text PDF

Ram sperm undergo a sequence of physiological and biochemical changes collectively termed as capacitation to perform oocyte fertilization. However, the protein changes induced by capacitation remain in need of further exploration. Thus, the present study investigated the comparative proteomic profiling in ram spermatozoa under non-capacitating (NC) and capacitating (CAP) conditions in vitro using a liquid chromatography-tandem mass spectrometry combined with tandem mass tag labeling strategy.

View Article and Find Full Text PDF

Photorespiration, an essential metabolic component, is a classic example of interactions between the intracellular compartments of a plant cell: the chloroplast, peroxisome, mitochondria, and cytoplasm. The photorespiratory pathway is often modulated by abiotic stress and is considered an adaptive response. Monitoring the patterns of key enzymes located in different subcellular components would be an ideal approach to assessing the modulation of the photorespiratory metabolism under abiotic stress.

View Article and Find Full Text PDF

To measure the kinetic properties of photorespiratory enzymes, it is necessary to work with purified proteins. Protocols to purify photorespiratory enzymes from leaves of various plant species require several time-consuming steps. It is now possible to produce large quantities of recombinant proteins in bacterial cells.

View Article and Find Full Text PDF

Determination of Phosphoglycolate Phosphatase Activity via a Coupled Reaction Using Recombinant Glycolate Oxidase.

Methods Mol Biol

June 2024

Université Paris-Saclay, CNRS, INRAe, Université Paris Cité, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France.

Phosphoglycolate phosphatase (PGLP) dephosphorylates 2-phosphoglycolate to glycolate that can be further metabolized to glyoxylate by glycolate oxidase (GOX) via an oxidative reaction that uses O and releases HO. The oxidation of o-dianisidine by HO catalyzed by a peroxidase can be followed in real time by an absorbance change at 440 nm. Based on these reactions, a spectrophotometric method for measuring PGLP activity using a coupled reaction with recombinant Arabidopsis thaliana GOX is described.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!