A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bisphenol A significantly enhances the neutrophilic differentiation of promyelocytic HL-60 cells. | LitMetric

AI Article Synopsis

  • BPA is recognized as an endocrine disruptor, but its effects on the immune system, particularly leukocyte differentiation, are not well understood.
  • Research on HL-60 cells showed that low concentrations of BPA increased superoxide production and the expression of CD18 during neutrophilic differentiation.
  • BPA enhanced the activity of the transcription factor PU.1, crucial for granulocytic differentiation, indicating that BPA may promote neutrophilic maturation in a manner not dependent on estrogen receptors, potentially impacting mammalian innate immunity over time.

Article Abstract

Bisphenol A (BPA) is a well-known endocrine disruptor. However, little information is available on its immunological effects. To investigate the effect of BPA on leukocyte differentiation, we investigated its action on the neutrophilic differentiation of HL-60 cells induced by dimethylsulfoxide and granulocyte colony-stimulating factor (G-CSF) for 6 days. At low concentrations (10(-10)-10(-8) M), BPA significantly increased the superoxide production by differentiated HL-60 cells stimulated with opsonized zymosan (OZ) by about 20%, and expression of CD18, a component of the OZ-receptor, was increased to a similar extent by 10(-9) M BPA. To investigate the effect of BPA on the activity of PU.1, a transcription factor specific for granulocytic differentiation, we established a stable clone that expressed luciferase as a reporter of PU.1 activity. PU.1 activity increased during the neutrophilic differentiation of HL-60 cells, reaching a peak on day 3 and decreasing thereafter. Nanomolar BPA augmented the PU.1 activity on day 3 by about 60%. On the other hand, tamoxifen, a competitive inhibitor of estrogen receptors, did not suppress the effect of BPA on the differentiation of HL-60 cells. These results suggest that BPA exerts an enhancing effect on the neutrophilic maturation of leukocytes through an estrogen receptor-independent pathway. Long-term exposure to BPA might significantly affect the innate immunity of mammals, even at low doses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S1567-5769(03)00182-6DOI Listing

Publication Analysis

Top Keywords

hl-60 cells
20
neutrophilic differentiation
12
differentiation hl-60
12
pu1 activity
12
bpa
9
investigate bpa
8
activity pu1
8
differentiation
6
hl-60
5
cells
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!