Insulin-like growth factor I (IGF I) exerts an important role during skeletal growth and bone formation. Therefore, its localized delivery appears attractive for the treatment of bone defects. To prolong IGF I delivery, we entrapped the protein into biodegradable poly(lactide-co-glycolide) microspheres (PLGA MS) and evaluated the potential of this delivery system for new bone formation in two defect models of ovine long bones, i.e., a 8-mm methaphyseal drill hole and a 10-mm segmental tibia defect. Administration of 100 microg of IGF I in PLGA MS resulted in new bone formation within 3 weeks in the drill hole and bridging of the segmental defect within 8 weeks. The observed increase of 12% newly formed bone in the drill hole defect after 3 weeks was substantial, compared to the measured morphometric bone-to-total area ratio of 31% bone in normal cancellous bone. Bone regeneration was further explored by measuring gene expression of typical markers for local mediators and growth factors by real-time polymerase chain reaction. Inflammation was reduced in presence of IGF I and this in vivo observation was corroborated in vitro by quantifying gene expression of inflammatory proteins and by assessing the activation of the NF-kappaB pathway, playing an important role in the regulation of inflammation. Administration of the IGF I delivery system downregulated inflammatory marker gene expression at the site of bone injury, induced new bone formation and reduced bone resorption, and resulted in bridging of 10-mm segmental tibial defects within 8 weeks.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s8756-3282(03)00207-2DOI Listing

Publication Analysis

Top Keywords

bone formation
20
bone
12
drill hole
12
gene expression
12
insulin-like growth
8
growth factor
8
igf delivery
8
delivery system
8
10-mm segmental
8
defect weeks
8

Similar Publications

With the rise of bone tissue engineering (BET), 3D-printed HA/PCL scaffolds for bone defect repair have been extensively studied. However, little research has been conducted on the differences in osteogenic induction and regulation of macrophage (MPs) polarisation properties of HA/PCL scaffolds with different fibre orientations. Here, we applied 3D printing technology to prepare three sets of HA/PCL scaffolds with different fibre orientations (0-90, 0-90-135, and 0-90-45) to study the differences in physicochemical properties and to investigate the response effects of MPs and bone marrow mesenchymal stem cells (BMSCs) on scaffolds with different fibre orientations.

View Article and Find Full Text PDF

Novel Foamed Magnesium Phosphate Antimicrobial Bone Cement for Bone Augmentation.

J Biomed Mater Res B Appl Biomater

January 2025

Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China.

In dental implant surgery, infection is identified as the primary factor contributing to the failure of bone grafts. There is an urgent need to develop bone graft materials possessing antibacterial characteristics to facilitate bone regeneration. Magnesium phosphate bone cement (MPC) is highly desirable for bone regeneration due to its favorable biocompatibility, plasticity, and osteogenic capabilities.

View Article and Find Full Text PDF

The effect of LARP7 on gene expression during osteogenesis.

Mol Biol Rep

January 2025

Institute of Health Sciences, Department of Medical and Surgical Research, Hacettepe University, Ankara, Turkey.

Background: La-related protein 7 (LARP7) is a key regulator of RNA metabolism and is thought to play a role in various cellular processes. LARP7 gene autosomal recessive mutations are the cause of Alazami syndrome, which presents with skeletal abnormalities, intellectual disabilities, and facial dysmorphisms. This study aimed to determine the role of LARP7 in modulating gene expression dynamics during osteogenesis.

View Article and Find Full Text PDF

Osteogenic differentiation of bone marrow stem cells (BMSCs) is essential for bone tissue regeneration and repair. However, this process is often hindered by an unstable differentiation influenced by local microenvironmental factors. While small extracellular vesicles (sEVs) derived from osteogenically induced adipose mesenchymal stem cells (ADSCs) reportedly can promote osteogenic differentiation of BMSCs, the underlying molecular mechanisms remain incompletely understood.

View Article and Find Full Text PDF

Calcium supplementation before exercise attenuates the decrease in serum calcium and increase in PTH and bone resorption. This study investigated the effect of calcium supplementation on calcium and bone metabolism during load carriage in women. Forty-eight women completed two load carriage sessions (load carriage 1 n = 48; load carriage 2 n = 40) (12.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!