The influence of the crossed medial efferent system on cochlear mechanics of the mustached bat was tested by measuring delayed evoked otoacoustic emissions (DEOAEs), cochlear microphonics, distortion product otoacoustic emissions (DPOAEs) and stimulus frequency otoacoustic emissions. Contralaterally delivered sinusoids, broadband noise and bat echolocation calls were used for acoustic stimulation of the efferent system. With all four measures we found a level-dependent suppression under stimulation with both broadband noise and echolocation calls. In addition, the sharply tuned cochlear resonance of the mustached bat which is involved in processing echolocation signals at 61 kHz shifted upward in frequency by several 100 Hz. Presentation of sinusoids did not have any significant effect. DEOAEs and DPOAEs were in some cases enhanced during contralateral presentation of the bat calls at moderate intensities. The most important function of the efferent system in the mustached bat might be the control of the extraordinarily fine-tuned resonator of this species, which is close to instability as evident from the very pronounced evoked otoacoustic emissions which sometimes convert into spontaneous otoacoustic emissions of high level.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0378-5955(03)00235-1DOI Listing

Publication Analysis

Top Keywords

otoacoustic emissions
20
mustached bat
16
efferent system
12
cochlear mechanics
8
mechanics mustached
8
evoked otoacoustic
8
broadband noise
8
echolocation calls
8
bat
6
otoacoustic
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!