Objective: Reduced capillary permeability of the skeletal muscle vascular bed has been suggested to play a role in fructose-fed rats, corroborating a long held view that insulin resistance might partially be explained by the lack of access of insulin and glucose to its target organs, mainly skeletal muscles. The goal of this study was to explore mechanisms underlying this vascular abnormality, and more specifically the role of bradykinin and nitric oxide (NO) on skeletal muscle microcirculation and the extravasation of macromolecules.
Methods: For that purpose, Sprague-Dawley rats were fed with either a fructose-enriched (F) or a normal chow (N) diet and extravasation of macromolecules was assessed at 4 weeks by measuring in vivo the extravasation of Evans Blue (EB) dye in the quadriceps muscles of both groups after the intravenous injection of the potent vasodilator bradykinin (150 microg/kg).
Results: As expected, fructose-fed rats had less extravasation of EB in skeletal muscle in the basal state as compared to controls (F 17.6 +/- 4.4 vs. N 43.6 +/- 6.9 microg/g dry tissue; P<0.01). In response to bradykinin, the EB dye extravasation in skeletal muscle was 89.4% higher in rats fed the normal chow diet compared to the basal state (P<0.03). In contrast, no significant increase in vasopermeability was observed in fructose-fed animals acutely injected with BK (17.6 +/- 4.4 microg/g in the basal state versus 24.6 +/- 3.1 microg/g after the injection of BK; P=NS). To distinguish a functional from an anatomical/structural defect, hematoxylin-eosin sections as well as electron micrographs of skeletal muscle microvessels were examined in both groups of animals: no obvious abnormalities were found. However, in homogenates of skeletal muscles (quadriceps) of fructose-fed rats, there was a marked reduction of NO synthase (NOS) activity (-33.8%; P<0.001) as well as endothelial NOS immunoreactive mass (-23.4%; P<0.04) as compared to control animals.
Conclusion: There is unresponsiveness of the skeletal muscle capillary bed to bradykinin in insulin-resistant animals most probably due to a reduction in endothelial NOS (activity and mass). Our results indicate a functional defect possibly involving responsiveness of the precapillary resistance and/or the endothelial barrier to bradykinin in skeletal muscles. Since insulin must cross the endothelial monolayer to reach its target cells on the abluminal side, it is suggested that reduced endothelial NOS and consequent reduced extravasation of macromolecules could exacerbate insulin resistance in skeletal muscles and hypertension in the fructose-fed rat.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0008-6363(03)00521-2 | DOI Listing |
J Clin Invest
January 2025
Center for Inherited Myology Research, Virginia Commonwealth University, Richmond, United States of America.
Background: Myotonic dystrophy type 1 (DM1) is a multisystemic, CTG repeat expansion disorder characterized by a slow, progressive decline in skeletal muscle function. A biomarker correlating RNA mis-splicing, the core pathogenic disease mechanism, and muscle performance is crucial for assessing response to disease-modifying interventions. We evaluated the Myotonic Dystrophy Splice Index (SI), a composite RNA splicing biomarker incorporating 22 disease-specific events, as a potential biomarker of DM1 muscle weakness.
View Article and Find Full Text PDFDiabetes
January 2025
William Harvey Research Institute, Barts Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK.
Diabetes mellitus (DM) leads to a more rapid development of DM cardiomyopathy (dbCM) and progression to heart failure in women than men. Combination of high-fat diet (HFD) and freshly-injected streptozotocin (STZ) has been widely used for DM induction, however emerging data shows that anomer-equilibrated STZ produces an early onset and robust DM model. We designed a novel protocol utilising a combination of multiple doses of anomer-equilibrated STZ injections and HFD to develop a stable murine DM model featuring dbCM analogous to humans.
View Article and Find Full Text PDFAgri
January 2025
Department of Anesthesiology and Reanimation, Bursa Uludağ University Faculty of Medicine, Bursa, Türkiye.
Objectives: In this study, we aimed to compare the efficacy of two regional anesthesia methods, transversus abdominis plane (TAP) block and erector spinae plane (ESP) block, for intraoperative and postoperative pain relief in patients undergoing laparoscopic nephrectomy.
Methods: Fifty patients aged 18-80 years with American Society of Anesthesiologists (ASA) classification I-II scheduled for elective laparoscopic nephrectomy were included after ethical approval and informed consent. Patients were randomly assigned to either Group TAP (receiving TAP block) or Group ESP (receiving ESP block).
Agri
January 2025
Department of Anesthesiology and Reanimation, İstanbul Medipol University Faculty of Medicine, İstanbul, Türkiye.
Objectives: Breast-conserving surgery is a common breast operation type in the world. Patients may feel severe postoperative pain after the surgery. Several regional anesthesia methods are used for postoperative pain control as a part of multimodal analgesia management after breast surgery.
View Article and Find Full Text PDFImmun Inflamm Dis
January 2025
Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Objective: This study aimed to evaluate the activity of extraocular muscles (EOMs) in patients with thyroid-associated ophthalmopathy (TAO) using turbo spin echo imaging. By analyzing tissue heterogeneity, apparent diffusion coefficient (ADC) histogram analysis offers enhanced insights into edema within the EOMs.
Methods: Eighty-eight patients with TAO were retrospectively evaluated and allocated into active (n = 24, clinical activity score [CAS] ≥ 3) and inactive (n = 64, CAS < 3) groups.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!