This study was designed to investigate the cardiovascular consequences of oral administration of Cedrelopsis grevei (CG) in normotensive rats. Experiments were designed to investigate hemodynamic parameters in vivo as well as the consequences of CG treatment on the vasoconstriction response to norepinephrine and the vasorelaxant response to ACh ex vivo in isolated aortas and small mesenteric arteries (SMA). Treatment of male Wistar rats with 80 mg/kg CG for 4 wk induced a progressive decrease in systolic blood pressure. In the aorta, CG did not significantly alter the response to norepinephrine despite the participation of extraendothelial nitric oxide (NO)-induced hyporeactivity. In the SMA, contraction to norepinephrine was not modified by CG treatment even though it enhanced the participation of endothelial NO. Endothelium-dependent relaxation to ACh was increased in both the aorta and SMA from CG-treated rats. In the aorta from CG-treated rats, the mechanism involved superoxide dismutase (SOD)- and catalase-sensitive free radical production. The latter was associated with enhanced expression of Cu/Zn SOD and endothelial NO synthase. These results suggest that oral administration of CG produces a decrease in blood pressure in normotensive rats. This hemodynamic effect was associated with enhanced endothelium-dependent relaxation and an induction of Cu/Zn SOD and endothelial NO synthase expressions in the vessel wall. They also show subtle mechanisms that compensate for the increased participation of NO to maintain unchanged agonist-induced contractility. These data provide a pharmacological basis for the empirical use of CG against cardiovascular diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpheart.00584.2003 | DOI Listing |
Nutrients
December 2024
Health Sciences Center, Universidade Estadual do Ceará, Fortaleza 60714-903, Brazil.
Background: Children and adolescents with obesity have altered serum copper (Cu) and zinc (Zn) levels, which are associated with oxidative stress, inflammation, and health outcomes. The inclusion of cashew nuts in an adequate diet may provide health benefits and help improve the mineral status of individuals with obesity.
Objective: To evaluate the effects of cashew nut consumption on biomarkers of Cu and Zn status in adolescents with obesity.
Ecotoxicology
January 2025
Anshun City Branch of Guizhou Tobacco Company, Anshun, Guizhou, China.
Pesticides often exist as complex mixtures in soil environments, yet the toxicity of these combinations has not been thoroughly investigated. In light of this, the current study aimed to assess the enzymatic activity and gene expression responses in the earthworm Eisenia fetida when exposed to a mixture of beta-cypermethrin (BCY) and triadimefon (TRI). The findings revealed that co-exposure to BCY and TRI triggered acute synergistic toxicity in E.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
Global pollution caused by micro/nanoplastics (M/NPs) is threatening agro-ecosystems, compromising food security and human health. Also, the increasing use of graphene-family nanomaterials (GFNs) in agricultural products has led to their widespread presence in agricultural systems. However, there is a large gap in the literature on the combined effects of MNPs and GFNs on agricultural plants.
View Article and Find Full Text PDFSci Rep
December 2024
Naval Special Medical Center, Naval Medical University, Shanghai, 200433, China.
Superoxide dismutase (SOD) plays important roles in the balance of oxidation and antioxidation in body mostly by scavenging superoxide anion free radicals (O). Previously, we reported a novel Cu/Zn SOD from jellyfish Cyanea capillata, named CcSOD1, which exhibited excellent SOD activity and high stability. TAT peptide is a common type of cell penetrating peptides (CPPs) that efficiently deliver extracellular biomacromolecules into cytoplasm.
View Article and Find Full Text PDFBMC Oral Health
December 2024
Cerrahpaşa Faculty of Medicine, Department of Medical Biochemistry, Istanbul University-Cerrahpaşa, Istanbul, Turkey.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!