The aim of the present study was to investigate the potential direct effects of insulin-like growth factor-I (IGF-I) on adult rat hippocampal stem/progenitor cells (AHPs). IGF-I-treated cultures showed a dose-dependent increase in thymidine incorporation, total number of cells, and number of cells entering the mitosis phase. Pretreatment with fibroblast growth factor-2 (FGF-2) increased the IGF-I receptor (IGF-IR) expression, and both FGF-2 and IGF-I were required for maximal proliferation. Time-lapse recordings showed that IGF-I at 100 ng/ml decreased differentiation and increased proliferation of single AHPs. Specific inhibition of mitogen-activated protein kinase kinase (MAPKK), phosphatidylinositol 3-kinase (PI3-K), or the downstream effector of the PI3-K pathway, serine/threonine p70 S6 kinase (p70(S6K)), showed that both the MAPK and the PI3-K pathways participate in IGF-I-induced proliferation but that the MAPK activation is obligatory. These results were confirmed with dominant-negative constructs for these pathways. Stimulation of differentiation was found at a low dose (1 ng/ml) of IGF-I, clonal analysis indicating an instructive component of IGF-I signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1044-7431(03)00082-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!