Viral dsRNA activates mucin transcription in airway epithelial cells.

FEBS Lett

Biomedical Sciences Program, Cardiovascular Research Institute, Department of Anatomy, University of California, San Francisco 94143-0452, USA.

Published: October 2003

Double-stranded (ds) RNA is a biologically active component of many viruses including rhinoviruses infecting the upper respiratory tract. Mucus production is a common symptom of such infections. Here, we show that mucin, the glycoprotein subunit of mucus gels, is transcriptionally upregulated in an NF-kappaB- and p38-dependent manner when homogeneous cultures of epithelial cells are exposed to dsRNA. Furthermore, upstream of p38 in this system, dsRNA stimulates the extracellular release of ATP and activation of cell surface ATP receptors, which are G protein-coupled. This results in the stimulation of phospholipase C and protein kinase C. These findings suggest that ATP receptor antagonists could be used to modulate mucus production induced by virus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0014-5793(03)00863-9DOI Listing

Publication Analysis

Top Keywords

epithelial cells
8
mucus production
8
viral dsrna
4
dsrna activates
4
activates mucin
4
mucin transcription
4
transcription airway
4
airway epithelial
4
cells double-stranded
4
double-stranded rna
4

Similar Publications

Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).

View Article and Find Full Text PDF

Background: During mammalian spermatogenesis, the cytoskeleton system plays a significant role in morphological changes. Male infertility such as non-obstructive azoospermia (NOA) might be explained by studies of the cytoskeletal system during spermatogenesis.

Methods: The cytoskeleton, scaffold, and actin-binding genes were analyzed by microarray and bioinformatics (771 spermatogenic cellsgenes and 774 Sertoli cell genes).

View Article and Find Full Text PDF

The process of viral entry into host cells is crucial for the establishment of infection and the determination of viral pathogenicity. A comprehensive understanding of entry pathways is fundamental for the development of novel therapeutic strategies. Standard techniques for investigating viral entry include confocal microscopy and flow cytometry, both of which provide complementary qualitative and quantitative data.

View Article and Find Full Text PDF

Clear cell renal cell carcinoma is a prevalent urological malignancy, imposing substantial burdens on both patients and society. In our study, we used bioinformatics methods to select four putative target genes associated with EMT and prognosis and developed a nomogram model which could accurately predicting 5-year patient survival rates. We further analyzed proteome and single-cell data and selected PLCG2 and TMEM38A for the following experiments.

View Article and Find Full Text PDF

The aberrant vascular response associated with tendon injury results in circulating immune cell infiltration and a chronic inflammatory feedback loop leading to poor healing outcomes. Studying this dysregulated tendon repair response in human pathophysiology has been historically challenging due to the reliance on animal models. To address this, our group developed the human tendon-on-a-chip (hToC) to model cellular interactions in the injured tendon microenvironment; however, this model lacked the key element of physiological flow in the vascular compartment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!