A novel non-containing-nitrogen bisphosphonate inhibits both in vitro and in vivo angiogenesis.

Biochem Biophys Res Commun

Laboratoire d'Oncologie Cellulaire et Moléculaire, UPRES 2360, Université Paris 13, UFR SMBH, Bobigny, France.

Published: October 2003

Bisphosphonates (BP) are powerful inhibitors of bone resorption and are widely used in the treatment of patients with metastasis-induced osteolysis. In the present study, we show that a novel non-nitrogen-containing BP (BP7033) that exhibits antitumor activity is a potent inhibitor of both in vivo and in vitro angiogenesis. When administered to mice, BP7033 inhibited tumoral angiogenesis (65% at 0.06mg/injection) as well as tumor growth (65% at 0.006mg/injection) in a tumor model of A431 cells xenografted in nude mice, with no sign of toxicity. Additionally, in vivo angiogenesis induced by vascular endothelial growth factor-containing Matrigel implants was reduced by 90% in the presence of BP7033 (0.6mg/plug). In vitro, BP7033 inhibited proliferation of human umbilical vein endothelial cells (HUVEC) (IC(50) value 3x10(-4) M) and completely prevented the formation of capillary-like tubules by HUVEC in Matrigel. Moreover, treatment of A431 cells by BP7033 induced an inhibition of Ras processing and a decrease in the secretion of both vascular endothelial growth factor and matrix metalloproteinase-2, two well-known stimulators of the proliferation and migration of endothelial cells. These findings indicate that this new BP compound has marked antiangiogenic properties and thus represents a promising candidate for treatment of malignant diseases with an angiogenic component.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2003.09.083DOI Listing

Publication Analysis

Top Keywords

vivo angiogenesis
8
bp7033 inhibited
8
a431 cells
8
vascular endothelial
8
endothelial growth
8
endothelial cells
8
bp7033
5
novel non-containing-nitrogen
4
non-containing-nitrogen bisphosphonate
4
bisphosphonate inhibits
4

Similar Publications

Deep cutaneous wounds, which are difficult to heal and specifically occur on dynamic body surfaces, remain a substantial healthcare challenge in clinical practice because of multiple underlying factors, including excessive reactive oxygen species, potential bacterial infection, and extensive degradation of the extracellular matrix (ECM) which further leads to the progressive deterioration of the wound microenvironment. Any available individual wound therapy, such as antibiotic-loaded cotton gauze, cannot address all these issues. Engineering an advanced multifunctional wound dressing is the current need to promote the overall healing process of such wounds.

View Article and Find Full Text PDF

Quercetin, a flavonoid found in vegetables and fruits, has been extensively studied for its health benefits and disease management. Its role in the prevention of various pathogenesis has been well-documented, primarily through its ability to inhibit oxidative stress, inflammation, and enhance the endogenous antioxidant defense mechanisms. Electronic databases such as Google Scholar, Scopus, PubMed, Medline, and Web of Science were searched for information regarding quercetin and its role in various pathogeneses.

View Article and Find Full Text PDF

Cancer persists as a significant global health challenge, claiming millions of lives annually despite remarkable strides in therapeutic innovation. Challenges such as drug resistance, toxicity, and suboptimal efficacy underscore the need for novel treatment paradigms. In this context, the repurposing of antibiotics as anti-cancer agents has emerged as an attractive prospect for investigation.

View Article and Find Full Text PDF

Polydopamine nanoparticles loaded with sodium ferulate for targeted therapy of myocardial infarction in endothelial cells.

Int J Pharm

January 2025

Department of Pharmacy, the Second Affiliated Hospital, Harbin Medical University (Key Laboratory of Medications Research, College of Heilongjiang Province), Harbin 150086, China; Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin 150086, China. Electronic address:

Myocardial infarction (MI) is a leading cause of heart failure and death in cardiovascular diseases. Most drug trials currently fail due to inadequate local drug activity and side effects. In this study, we developed a novel polydopamine (PDA) nano delivery system that carries sodium ferulate (SF) and is modified with RGD peptides (SF/RGD-PDA NPs) for precise targeted delivery.

View Article and Find Full Text PDF

Photothermal therapy (PTT) using thermal and tumor microenvironment-responsive reagents is promising for cancer treatment. This study demonstrates an effective PTT nanodrug consisting of hollow-structured, thermally sensitive polydopamine nanobowls (HPDA NB), molybdenum sulfide (MoS) nanozyme, and tirapazamine (TPZ; a hypoxia-responsive drug), with a structure of HPDA@TPZ/MoS NBs which is hereafter denoted as HPTZMoS NBs. With the Fenton-like activity, the HPTZMoS NBs in the presence of HO catalyze the formation of hydroxyl radicals, providing chemodynamic therapy (CDT) effect and deactivating glutathione.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!