A novel RNA splicing-mediated gene silencing mechanism potential for genome evolution.

Biochem Biophys Res Commun

Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.

Published: October 2003

Over 90% of the human genome consists of non-protein-coding regions. Introns constitute most of the non-coding regions located in precursor messenger RNAs (pre-mRNAs). During pre-mRNA maturation, the introns are excised out of mRNA and thought to be completely digested prior to translation. If the introns were merely metabolic "leavings," why would the genome hold such a large amount of extraneous genetic materials? Here we show a novel posttranscriptional gene silencing system identified within mammalian introns. By packaging human spliceosome-recognition sites along with an exonic insert into an artificial intron, we observed that the splicing and processing of such an exon-containing intron in either sense or antisense conformation produced equivalent gene silencing effects, while a palindromic hairpin insert containing both sense and antisense strands resulted in synergistic effects. These findings may explain how cells respond to the presence of transgenic introns that are homologous to pre-existing exons during genomic evolution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2003.09.070DOI Listing

Publication Analysis

Top Keywords

gene silencing
12
sense antisense
8
introns
5
novel rna
4
rna splicing-mediated
4
splicing-mediated gene
4
silencing mechanism
4
mechanism potential
4
potential genome
4
genome evolution
4

Similar Publications

Foliar spray double-stranded RNA targeting HvIAP1 induces high larval and adult mortality in Henosepilachna vigintioctopunctata.

Pest Manag Sci

January 2025

Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.

Background: Exogenous double-stranded RNA (dsRNA) has the potential to serve as an effective alternative to conventional chemical pesticides for the control of insect pests, because it can specifically inhibit essential gene expression in these organisms. However, identifying suitable gene targets remains a crucial step in the development of RNA interference (RNAi)-based pest control strategies.

Results: In this study, three apoptosis-related genes were selected to evaluate their potential for RNAi-induced lethality in Henosepilachna vigintioctopunctata via foliar spray dsRNAs.

View Article and Find Full Text PDF

Background: The mite Varroa destructor is the most serious pest of the western honey bee (Apis mellifera) and a major factor in the global decline of colonies. Traditional control methods, such as chemical pesticides, although quick and temporarily effective, leave residues in hive products, harming bees and operators' health, while promoting pathogen resistance and spread. As a sustainable alternative, RNA interference (RNAi) technology has shown great potential for honey bee pest control in laboratory assays, but evidence of effectiveness in the field has been lacking.

View Article and Find Full Text PDF

Background: Histone H2B is highly expressed in many types of cancers and is involved in cancer development. H2B clustered histone 9 (H2BC9), a member of the H2B family, plays critical roles in gene expression regulation, chromosome structure, DNA repair stability, and cell cycle regulation. However, the diagnostic and prognostic value of H2BC9 in head and neck squamous cell carcinoma (HNSCC) remains unclear.

View Article and Find Full Text PDF

Decoding ferroptosis in alcoholic hepatitis: A bioinformatics approach to hub gene identification.

Genomics

January 2025

Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; Hangzhou Medical College, Linan District, Hangzhou 311300, China. Electronic address:

Background: Ferroptosis is associated with alcoholic hepatitis (AH); however, the underlying mechanisms remain unclear.

Methods: Changes in iron content and oxidative stress in AH patients and in vivo and in vitro models were analyzed. Iron homeostasis pathways in the livers of patients with AH were investigated using RNA sequencing.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are highly conserved endogenous non-coding RNAs that play a crucial role in fish immune response by regulating gene expression at the post-transcriptional level. In recent years, the viral diseases caused by infectious hematopoietic necrosis virus (IHNV) have caused significant economic losses in rainbow trout (Oncorhynchus mykiss) aquaculture, whereas the immune regulatory mechanisms of miRNAs involved in rainbow trout resistance to IHNV infection remains largely undefined. In this study, we analyzed the structural characteristics of Oncorhynchus mykiss tumor necrosis factor receptor-associated factor 3 (OmTRAF3) by bioinformatics software and explored the molecular mechanism of miR-203-3p in rainbow trout resistance to IHNV by regulating OmTRAF3 in vivo and in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!