Downstream processing of microbial rennet from solid state fermented moldy bran.

Biotechnol Adv

Fermentation Technology and Bioengineering Discipline, Central Food Technological Research Institute, Mysore, India.

Published: December 2003

In recent years due to acute shortage of calf-rennet, microbial rennets seem to be an effective alternative and are commercially produced. Mucor miehei was cultivated under the solid state fermentation conditions, and the moldy bran was extracted using a semicontinuous multiple contact forced percolation method. The treated extract was then filtered through 5% R16 clay which enabled easy and efficient removal of impurities such as lipase and protease without involving costly chemical treatments. The ethyl alcohol precipitated enzyme was dried and made into powder form having activity of 1.5 x 10(5)Soxhlet units/gm.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0734-9750(93)90009-cDOI Listing

Publication Analysis

Top Keywords

solid state
8
moldy bran
8
downstream processing
4
processing microbial
4
microbial rennet
4
rennet solid
4
state fermented
4
fermented moldy
4
bran years
4
years acute
4

Similar Publications

To investigate the dynamic characteristics and safe operation speed threshold of metro train passing through curved bridge (CB) considering resilient wheels, the mechanical connection characteristics of rim and web are discussed firstly. Based on the train-track-bridge interaction theory, the coupled dynamic model of metro train-CB considering resilient wheels is established. Then, the vehicle-bridge coupled dynamic characteristics under the excitation of long-short wave track irregularity are researched.

View Article and Find Full Text PDF

Valley charge-transfer insulator in twisted double bilayer WSe.

Nat Commun

January 2025

National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, China.

In flat-band systems, emergent physics can be substantially modified by the presence of another nearby electronic band. For example, a Mott˘Hubbard insulator can turn into a charge transfer insulator if other electronic states enter between the upper and lower Hubbard bands. Here, we introduce twisted double bilayer (TDB) WSe, with twist angles near 60°, as a controllable platform in which the K-valley band can be tuned to close vicinity of the Γ-valley moiré flat band.

View Article and Find Full Text PDF

Room temperature ferroelectricity in monolayer graphene sandwiched between hexagonal boron nitride.

Nat Commun

January 2025

Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, China.

The ferroelectricity in stacked van der Waals multilayers through interlayer sliding holds great promise for ultrathin high-density memory devices, yet mostly subject to weak polarization and cryogenic operating condition. Here, we demonstrate robust room-temperature ferroelectricity in monolayer graphene sandwiched between hexagonal boron nitride layers with a rhombohedral-like stacking (i.e.

View Article and Find Full Text PDF

Crystalline pentacene is a model solid-state light-harvesting material because its quantum efficiencies exceed 100% via ultrafast singlet fission. The singlet fission mechanism in pentacene crystals is disputed due to insufficient electronic information in time-resolved experiments and intractable quantum mechanical calculations for simulating realistic crystal dynamics. Here we combine a multiscale multiconfigurational approach and machine learning photodynamics to understand competing singlet fission mechanisms in crystalline pentacene.

View Article and Find Full Text PDF

Versatile nitrate-respiring heterotrophs are previously concealed contributors to sulfur cycle.

Nat Commun

January 2025

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.

Heterotrophic denitrifiers play crucial roles in global carbon and nitrogen cycling. However, their inability to oxidize sulfide renders them vulnerable to this toxic molecule, which inhibits the key enzymatic reaction responsible for reducing nitrous oxide (NO), thereby raising greenhouse gas emissions. Here, we applied microcosm incubations, community-isotope-corrected DNA stable-isotope probing, and metagenomics to characterize a cohort of heterotrophic denitrifiers in estuarine sediments that thrive by coupling sulfur oxidation with denitrification through chemolithoheterotrophic metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!