Biotechnol Adv
Department of Microbiology, Cuban Research Institute on Sugarcane By-Products (ICIDCA), P.O. Box 4026, CP 11 000, Havana, Cuba.
Published: October 1999
The use of phosphate solubilizing bacteria as inoculants simultaneously increases P uptake by the plant and crop yield. Strains from the genera Pseudomonas, Bacillus and Rhizobium are among the most powerful phosphate solubilizers. The principal mechanism for mineral phosphate solubilization is the production of organic acids, and acid phosphatases play a major role in the mineralization of organic phosphorous in soil. Several phosphatase-encoding genes have been cloned and characterized and a few genes involved in mineral phosphate solubilization have been isolated. Therefore, genetic manipulation of phosphate-solubilizing bacteria to improve their ability to improve plant growth may include cloning genes involved in both mineral and organic phosphate solubilization, followed by their expression in selected rhizobacterial strains. Chromosomal insertion of these genes under appropriate promoters is an interesting approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0734-9750(99)00014-2 | DOI Listing |
Front Microbiol
January 2025
Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory/Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, China.
Low phosphorus (P) use efficiency significantly impacts rice yields. An environmentally friendly approach to increase phosphorus absorption and utilization in rice involves the exploration of phosphorus-solubilizing fungal resources. This study aimed to isolate and characterize fungal strains from the rice rhizosphere and assess their phosphate solubilization capabilities, plant-growth-promoting (PGP) traits, and mechanisms involved.
View Article and Find Full Text PDFJ Environ Manage
January 2025
INRAE, Aix-Marseille Univ., UMR RECOVER, Aix-en-Provence, France.
Drought stress during the plant's growing season is a serious constraint to plant establishment in arid and semiarid Mediterranean ecosystems. Plant growth promoting rhizobacteria (PGPR) as environmentally friendly and innovative management approach can be used to produce seedlings better adapted to these environments. We tested native PGPR strains isolated from drought-tolerant tree and shrub species originating from two climatically contrasting regions: hot-dry (Dehloran) and milder Mediterranean climate (Ilam).
View Article and Find Full Text PDFCurr Microbiol
January 2025
School of Organic Farming, Punjab Agricultural University, Ludhiana, 141004, India.
Endophytes are bacteria that inhabit host plants for most of their life cycle without causing harm. In the study, 15 endophytic bacteria were isolated from 30 forage Sorghum plants and assessed for various plant growth-promoting (PGP) traits, such as phosphate solubilization, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, ammonia production, siderophore production, gibberellic acid production, Indole-3-acetic acid (IAA) production, and zinc solubilization. One isolate, JJG_Zn, demonstrated multiple PGP activities and was identified as Enterobacter sp.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
All India Network Project on Soil Biodiversity-Biofertilizers, ICAR-Indian Institute of Soil Science, Bhopal, 462038, India.
This study evaluated a dual management approach to enhance plant-growth by improving soil fertility, reducing pathogenic stress using PGPR that affect phosphorus-transporter (pht) genes. Among 213 maize rhizobacterial isolates, 40 demonstrated the ability to solubilize tri-calcium phosphate, potassium, zinc, and silicon, showing various PGP traits. Nine of these isolates exhibited significant antagonistic activity against the plant pathogens Colletotrichum chlorophyti and Xanthomonas axonopodis.
View Article and Find Full Text PDFFront Genet
January 2025
Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-Region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China.
Introduction: P. Y. Li is a plant used to treat respiratory diseases such as pneumonia, bronchitis, and influenza.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.