Loss-of-function alterations of INK4A are commonly observed in lymphoid malignancies, but are consistently absent in pre-B cell leukemias induced by the chimeric oncoprotein E2a-Pbx1 created by t(1;19) chromosomal translocations. We report here that experimental induction of E2a-Pbx1 enhances expression of BMI-1, a lymphoid oncogene whose product functions as a transcriptional repressor of the INK4A-ARF tumor suppressor locus. Bmi-1-deficient hematopoietic progenitors are resistant to transformation by E2a-Pbx1; however, the requirement for Bmi-1 is alleviated in cells deficient for both Bmi-1 and INK4A-ARF. Furthermore, the adverse effects of E2a-Pbx1 on pre-B cell survival and differentiation are partially bypassed by forced expression of p16(Ink4a). These results link E2a-Pbx1 with Bmi-1 on an oncogenic pathway that is likely to play a role in the pathogenesis of human lymphoid leukemias through downregulation of the INK4A-ARF gene.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1097-2765(03)00277-6DOI Listing

Publication Analysis

Top Keywords

hematopoietic progenitors
8
pre-b cell
8
e2a-pbx1
6
bmi-1
5
bmi-1 regulation
4
ink4a-arf
4
regulation ink4a-arf
4
ink4a-arf downstream
4
downstream requirement
4
requirement transformation
4

Similar Publications

Bone Marrow Endothelial Progenitor Cells remodelling facilitates normal hematopoiesis during Acute Myeloid Leukemia Complete Remission.

Nat Commun

December 2024

Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China.

Although acute myeloid leukemia (AML) affects hematopoietic stem cell (HSC)-supportive microenvironment, it is largely unknown whether leukemia-modified bone marrow (BM) microenvironment can be remodeled to support normal hematopoiesis after complete remission (CR). As a key element of BM microenvironment, endothelial progenitor cells (EPCs) provide a feasible way to investigate BM microenvironment remodeling. Here, we find reduced and dysfunctional BM EPCs in AML patients, characterized by impaired angiogenesis and high ROS levels, could be partially remodeled after CR and improved by N-acetyl-L-cysteine (NAC).

View Article and Find Full Text PDF

Introduction: Hematopoietic stem cell transplantation is a potentially curative intervention for a broad range of diseases. However, there is evidence that malignant or pre-malignant clones contained in the transplant can expand in the recipient and trigger donor-derived malignancies. This observation has gained much attention in the context of clonal hematopoiesis, a medical condition where significant amounts of healthy blood cells are derived from a small number of hematopoietic stem cell clones.

View Article and Find Full Text PDF

Background: Sickle cell disease (SCD) and β-thalassemia patients with elevated gamma globin (HBG1/G2) levels exhibit mild or no symptoms. To recapitulate this natural phenomenon, the most coveted gene therapy approach is to edit the regulatory sequences of HBG1/G2 to reactivate them. By editing more than one regulatory sequence in the HBG promoter, the production of fetal hemoglobin (HbF) can be significantly increased.

View Article and Find Full Text PDF

ALDH Enzymes and Hematological Diseases: A Scoping Review of Literature.

Discov Med

December 2024

Department of Biological Hematology, Tours University Hospital, 37000 Tours, France.

Aldehyde dehydrogenases (ALDHs) constitute a group of enzymes that catalyze the oxidation of aldehydes to carboxylic acids. The human ALDH superfamily, including 19 different isoenzymes (ALDH1A1, ALDH1A2, ALDH1A3, AHDH1B1, ALDH1L1, ALDH1L2, ALDH2, ALDH3A1, ALDH3A2, ALDH3B1, ALDH3B2, ALDH4A1, ALDH5A1, ALDH6A1, ALDH7A1, ALDH8A1, ALDH9A1, ALDHA16A1, ALDH18A1), displays different key physiological and toxicological functions, with specific tissue expression and substrate specificity. Several studies have established that ALDH are interesting markers for the identification and quantification of human hematopoietic stem cells and cancer stem cells, notably leukemic stem cells.

View Article and Find Full Text PDF

Exposure to Nanoplastics Cause Caudal Vein Plexus Damage and Hematopoietic Dysfunction by Oxidative Stress Response in Zebrafish .

Int J Nanomedicine

December 2024

Key Laboratory of Bioresources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, People's Republic of China.

Introduction: The proliferation of nanoplastics (NPs) has emerged as a significant environmental concern due to their extensive use, raising concerns about potential adverse effects on human health. However, the exact impacts of NPs on the early development of hematopoietic organs remain poorly understood.

Methods: This investigation utilized fluorescence microscopy to observe the effects of various NP concentrations on the caudal vein plexus (CVP) development in zebrafish embryos.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!