Nitrogen, deuterium, halogen, and carbon kinetic isotope effects have been modeled for the Menshutkin reaction between methyl halides and substituted N,N-dimethylaniline at the HF/6-31G(d) level of theory augmented by the C-PCM continuum solvent model for several solvents. Systematic changes in geometries of the transition states and Gibbs free energies of activation have been found with phenyl ring substituents, solvent, and the leaving group. Kinetic isotope effects also change systematically; however, these changes are predicted to be small, inside the usual precision of the experimental measurements. On the contrary, no correlation has been found between the kinetic isotope effects and the Hammett constants for para substituents. Thus opposite to previous assumptions, our results indicate that kinetic isotope effects on the Menshutkin reaction cannot be used to predict the position of the transition state on the reaction coordinate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo034799j | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!