To investigate new architectures for the self-assembly of multiporphyrin arrays, a one-flask synthesis of a shape-persistent cyclic hexameric array of porphyrins was exploited to prepare six derivatives bearing diverse pendant groups. The new arrays contain 6-12 carboxylic acid groups, 12 amidino groups, 6 thiol groups, or 6 thiol groups and 6 carboxylic acid groups in protected form (S-acetylthio, TMS-ethyl, TMS-ethoxycarbonyl). The arrays contain alternating Zn and free base (Fb) porphyrins or all Zn porphyrins. The one-flask synthesis entails a template-directed, Pd-mediated coupling of a p/p'-substituted diethynyl Zn porphyrin and a m/m'-substituted diiodo Fb porphyrin. The porphyrin building blocks (trans-A(2)B(2), trans-AB(2)C) contain the protected pendant groups at nonlinking meso positions. A self-assembled monolayer (SAM) of a Zn(3)Fb(3) cyclic hexamer containing one thiol group on each porphyrin was prepared on a gold electrode and the surface-immobilized architecture was examined electrochemically. Together, the work reported herein provides cyclic hexameric porphyrin arrays for studies of self-assembly in solution or on surfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo034861c | DOI Listing |
Nature
November 2024
State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
Prokaryotic anti-phage immune systems use TIR and cGAS-like enzymes to produce 1''-3'-glycocyclic ADP-ribose (1''-3'-gcADPR) and cyclic dinucleotide (CDN) and cyclic trinucleotide (CTN) signalling molecules, respectively, which limit phage replication. However, how phages neutralize these distinct and common systems is largely unclear. Here we show that the Thoeris anti-defence proteins Tad1 and Tad2 both achieve anti-cyclic-oligonucleotide-based anti-phage signalling system (anti-CBASS) activity by simultaneously sequestering CBASS cyclic oligonucleotides.
View Article and Find Full Text PDFCell
December 2024
Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA. Electronic address:
RSC Chem Biol
July 2024
Department of Cell and Chemical Biology, Leiden University Medical Centre 2300 RC Leiden The Netherlands
The human complement pathway plays a pivotal role in immune defence, homeostasis, and autoimmunity regulation, and complement-based therapeutics have emerged as promising interventions, with both antagonistic and agonistic approaches being explored. The classical pathway of complement is initiated when the C1 complex binds to hexameric antibody platforms. Recent structural data revealed that C1 binds to small, homogeneous interfaces at the periphery of the antibody platforms.
View Article and Find Full Text PDFInorg Chem
July 2024
Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, People's Republic of China.
The functionalization of polyoxovanadate clusters is promising but of great challenge due to the versatile coordination geometry and oxidation state of vanadium. Here, two unprecedented silsesquioxane ligand-protected "fully reduced" polyoxovanadate clusters were fabricated via a facial solvothermal methodology. The initial mixture of the two polyoxovanadate clusters with different colors and morphologies (green plate and blue block ) was successfully separated as pure phases by meticulously controlling the assembly conditions.
View Article and Find Full Text PDFJ Bacteriol
July 2024
Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA.
Most microbial cells found in nature exist in matrix-covered, surface-attached communities known as biofilms. This mode of growth is initiated by the ability of the microbe to sense a surface on which to grow. The opportunistic pathogen () PA14 utilizes a single polar flagellum and type 4 pili (T4P) to sense surfaces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!