[reaction: see text] New monodentate phosphite ligands have been developed from axially chiral biphenols, which show excellent enantioselectivity in the Rh(I)-catalyzed hydrogenation of dimethyl itaconate. The new chiral ligand system is suitable to create libraries and possesses fine-tuning capability.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ol035343rDOI Listing

Publication Analysis

Top Keywords

monodentate phosphite
8
phosphite ligands
8
synthesis chiral
4
chiral monodentate
4
ligands catalytic
4
catalytic asymmetric
4
asymmetric hydrogenation
4
hydrogenation [reaction
4
[reaction text]
4
text] monodentate
4

Similar Publications

The crystal-structure determination of the title compound, [RhH(CHOP)(CO)]·2.25CD, is reported. The bis-phosphite ligand, CHOP, is well known as Biphephos.

View Article and Find Full Text PDF

An uncommon example of stable mixed-ligand zinc phosphite with genuine pores has been synthesized by using zinc metal, inorganic phosphite acid, thio-functionalized O-donor (2,5-thiophenedicarboxylate, TPDC), and tetradentate N-donor [1,2,4,5-tetrakis(imidazol-1-ylmethyl)benzene, TIMB] units assembled into one crystalline structure according to a hydro(solvo)thermal method. This is a very rare case of a metal phosphite incorporating both N- and O-donor ligands. The tetradentate TIMB linker bound to zinc atoms of the isolated zincophosphite hexamers to form a 3D open-framework structure by crosslinking structural components of 1D chains and 2D layers.

View Article and Find Full Text PDF

Phosphorus Ligands in Hydroformylation and Hydrogenation: A Personal Account.

Chem Rec

May 2021

Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr.HomiBhabha Road, Pune, 411008, India.

Metal-catalyzed hydroformylation and hydrogenation heavily rely on ligands, among which phosphorous ligands play a pivotal role. This personal account presents a selection of three distinct classes of phosphorous ligands, namely, monodentate meta-substituted phosphinites, bis-phosphites, and P-chiral supramolecular phosphines, developed in our group. The synthesis of these ligands, isolation, characterization, and their performance in transition metal-catalyzed hydroformylation, isomerizing hydroformylation, and asymmetric hydrogenation of olefins is summarized.

View Article and Find Full Text PDF

The first example of a thio-functionalized zincophosphite material (NTOU-2S) incorporating the 2,5-thiophenedicarboxylate (TPDC) ligands was synthesized using a hydro(solvo)thermal method and structurally characterized by single-crystal X-ray diffraction. Interestingly, the perspective view of the crystal structure for NTOU-2S is similar to our previous report of NTOU-2 but the carboxylate organic ligands (TPDC for NTOU-2S; 1,4-benzenedicarboxylate, BDC, for NTOU-2) in both compounds adopt different types of bis-monodentate coordination models (the unusual cis bonding versus a trans linkage) to bridge the metal atoms of inorganic tubes in the formation of large-channel zincophosphite frameworks, resulting in structural and functional diversities. The thiophene-based compound also displayed higher thermal stability and removal ability for the softer Hg cations from water solutions than the performance of sulfur-free NTOU-2.

View Article and Find Full Text PDF

Asymmetric Transfer Hydrogenation of Arylketones Catalyzed by Enantiopure Ruthenium(II)/Pybox Complexes Containing Achiral Phosphonite and Phosphinite Ligands.

Molecules

February 2020

Departamento de Química Orgánica e Inorgánica-IUQOEM (Unidad Asociada al CSIC), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo, E-33006 Oviedo, Principado de Asturias, Spain.

A family of complexes of the formula -[RuCl(L)(R-pybox)] (R-pybox = (,)-Pr-pybox, (,)-Ph-pybox, L = monodentate phosphonite, PPh(OR), and phosphinite, L = PPh(OR), ligands) were screened in the catalytic asymmetric transfer hydrogenation of acetophenone, observing a strong influence of the nature of both the R-pybox substituents and the L ligand in the process. The best results were obtained with complex -[RuCl{PPh(OEt)}{(,)-Ph-pybox}] (), which provided high conversion and enantioselectivity (up to 96% enantiomeric excess, ) for the reduction of a variety of aromatic ketones, affording the ()-benzylalcohols.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!