Download full-text PDF

Source

Publication Analysis

Top Keywords

microsatellite markers
4
markers population
4
population rio
4
rio grande
4
grande norte
4
norte northeastern
4
northeastern brazil
4
microsatellite
1
population
1
rio
1

Similar Publications

Spatial genetic characterization of the red fox (Vulpes vulpes) in the area between the Alps and the Central Dinaric Mountains.

Vavilovskii Zhurnal Genet Selektsii

November 2024

Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia Faculty of Environmental Protection, Velenje, Slovenia.

Red fox, Vulpes vulpes, is a globally distributed species characterized by its high adaptability to diverse habitats and a broad range of food resources. This remarkable adaptability has allowed the red fox to thrive in various environments, from urban areas to remote wilderness. In this study, we used a set of microsatellite markers for the comparative genetic analysis of red fox populations from two countries.

View Article and Find Full Text PDF

To clarify the genetic diversity and structure of the nucleus population of F1-generation , this study utilized 15 pairs of highly polymorphic microsatellite primers to analyze the simple sequence repeat (SSR) markers and genetic diversity in 15 full-sib families of . . A total of 112 alleles () and 60.

View Article and Find Full Text PDF

Microsatellites are present in mitochondria, chloroplast, and nuclear DNA, but nuclear microsatellites are more useful genetic tools than those in plastids or mitochondria. Plastid and mitochondrial microsatellites have been identified in the model plant (liverwort), but no laboratory has published information on nuclear microsatellite loci. The aim of this study was to detect novel nuclear markers in the most commonly employed liverwort species, design PCR primers that would allow amplification, and characterize the subsequently generated loci.

View Article and Find Full Text PDF

Background: Charcoal Rot (CR) poses a significant threat to mung bean crops by reducing yield, making the development of resistant varieties crucial for stable production and food security. This study evaluated 19 newly identified mung bean landraces using biochemical traits and SSR markers, revealing genetic variability, CR disease reactions, and traits influencing yield and resistance, which provide valuable insights for breeding CR-resistant, high-yielding varieties.

Methods And Results: Mung bean landraces were evaluated for their response to CR using 4 biochemical parameters, and 10 SSR markers to assess genetic variability and disease resistance.

View Article and Find Full Text PDF

Genetic relationship analysis and core collection construction of Eucalyptus grandis from Dongmen improved variety base: the largest eucalypt germplasm resource in China.

BMC Plant Biol

December 2024

State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.

Background: Eucalyptus grandis, which was first comprehensively and systematically introduced to China in the 1980s, is one of the most important fast-growing tree species in the forestry industry. However, to date, no core collection has been selected from the germplasm resources of E. grandis based on growth and genetic relationship analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!