Determination of polyacrylamide (PAM) concentration in soil waters is important in improving the efficiency of PAM application and understanding the environmental fate of applied PAM. In this study, concentrations of anionic PAM with high molecular weight in soil waters containing salts and dissolved organic matter (DOM) were determined quantitatively by size exclusion chromatography (SEC) with ultraviolet (UV) absorbance detection. Polyacrylamide was separated from interferential salts and DOM on a polymeric gel column eluted with an aqueous solution of 0.05 M KH2PO4 and then detected at a short UV wavelength of 195 nm. Analysis of PAM concentrations in soil sorption supernatants, soil leachates, and water samples from irrigation furrow streams showed that SEC is an effective approach for quantifying low concentrations (0-10 mg L(-1)) of PAM in waters containing soil DOM and salts. The method has a lower detection limit of 0.02 microg and a linear response range of 0.2 to 80 mg L(-1). Precision studies gave coefficients of variation of < 1.96% (n = 4) for > 10 mg L(-1) PAM and < 12% (n = 3) for 0.2 to 3 mg L(-1) PAM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2134/jeq2003.1922 | DOI Listing |
Environ Manage
January 2025
Department of Engineering, Reykjavik University, Reykjavík, Iceland.
This research assesses heavy metal contamination within the riparian zone of the Danro River, a tributary of the Ganges River basin in India, particularly impacted by sand mining activities. The study conducted analyses on major and trace elements in soil samples, focusing on those identified as ecologically hazardous by the Water Framework Directive of India. Utilizing a combination of indices (Enrichment Factor, Pollution Load Index, and Index of geo-accumulation) and statistical techniques such as Principal Component Analysis (PCA), the investigation aimed to evaluate contamination severity, ecological risks, and pollution sources.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Environmental Management, Graduate School of Agriculture, Kindai University, Nara, Japan.
Efficient agricultural management often relies on farmers' experiential knowledge and demands considerable labor, particularly in regions with challenging terrains. To reduce these burdens, the adoption of smart technologies has garnered increasing attention. This study proposes a convolutional neural network (CNN)-based model as a decision-support tool for smart irrigation in orchard systems, focusing on persimmon cultivation in mountainous regions.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China.
Membrane distillation (MD) efficiently desalinizes and treats high-salinity water as well as addresses the challenges in handling concentrated brines and wastewater. However, silica scaling impeded the effectiveness of MD for treating hypersaline water and wastewater. Herein, the effects of humic acid (HA) on silica scaling behavior during MD are systematically investigated.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Hydraulics and Water Resource Engineering, Kombolcha Institute of Technology, KioT, Wollo University, Ethiopia.
This research aims to monitor the hydrological drought trends within the geographical confines of Ethiopia, Sudan, and Egypt in the Blue Nile River Basin. Historical drought circumstances in the basin were analyzed through the utilization of the stream flow drought index (SDI). The long-term historical drought trend was investigated via the application of the Mann - Kendall Sen (MK) test.
View Article and Find Full Text PDFiScience
January 2025
Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India.
This article evaluated different production strategies, characteristics, and applications of biochar for ameliorating soil fertility and microbial diversity. The biochar production techniques are evolving, indicating that newer methods (including hydrothermal and retort carbonization) operate with minimum temperatures, yet resulting in high yields with significant improvements in different properties, including heating value, oxygen functionality, and carbon content, compared to the traditional methods. It has been found that the temperature, feedstock type, and moisture content play critical roles in the fabrication process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!