Recent advances in understanding the pathogenesis of obstructive sleep apnea.

Curr Opin Pulm Med

Division of Sleep Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.

Published: November 2003

Purpose Of Review: The pathogenesis of obstructive sleep apnea (OSA) is incompletely understood. Historically it was believed that patients with OSA have a small upper airway (often due to obesity) that is kept patent during wakefulness by the activity of upper airway dilating muscles. With the reduction in muscle tone at sleep onset, the airway collapses and causes apnea. While this appears to be the case for many patients with OSA, other patients show no major airway anatomic defects or minimal obesity.

Recent Findings: This has led to the concept that other factors such as unstable ventilatory control and changes in lung volume during sleep may be involved in the pathogenesis of OSA. Recently there have been several advances in our understanding of how these mechanisms are involved in OSA pathogenesis.

Summary: A more complete understanding of apnea pathogenesis may improve therapeutic techniques and reduce the consequences of OSA.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00063198-200311000-00002DOI Listing

Publication Analysis

Top Keywords

advances understanding
8
pathogenesis obstructive
8
obstructive sleep
8
sleep apnea
8
patients osa
8
upper airway
8
osa
6
pathogenesis
4
understanding pathogenesis
4
sleep
4

Similar Publications

Alzheimer's disease (AD) is a debilitating neurodegenerative disease that is marked by profound neurovascular dysfunction and significant cell-specific alterations in the brain vasculature. Recent advances in high throughput single-cell transcriptomics technology have enabled the study of the human brain vasculature at an unprecedented depth. Additionally, the understudied niche of cerebrovascular cells, such as endothelial and mural cells, and their subtypes have been scrutinized for understanding cellular and transcriptional heterogeneity in AD.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD), a hallmark of age-related cognitive decline, is defined by its unique neuropathology. Metabolic dysregulation, particularly involving glutamine (Gln) metabolism, has emerged as a critical but underexplored aspect of AD pathophysiology, representing a significant gap in our current understanding of the disease.

Methods: To investigate the involvement of GlnMgs in AD, we conducted a comprehensive bioinformatic analysis.

View Article and Find Full Text PDF

CXCR4 promotes tumor stemness maintenance and CDK4/6 inhibitors resistance in ER-positive breast cancer.

Breast Cancer Res

January 2025

Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.

Background: CDK4/6 inhibitors have significantly improved the survival of patients with HR-positive/HER2-negative breast cancer, becoming a first-line treatment option. However, the development of resistance to these inhibitors is inevitable. To address this challenge, novel strategies are required to overcome resistance, necessitating a deeper understanding of its mechanisms.

View Article and Find Full Text PDF

Background: Workplace health screening rarely includes measures of cardiorespiratory fitness, despite it being a greater predictor of cardiovascular disease and all-cause mortality than other routinely measured risk factors. This study aimed to determine the comparative acceptability of using a novel seismocardiography device to measure cardiorespiratory fitness via VO max during a workplace health check.

Methods: Participants were invited to participate in workplace health screening sessions where VO max was assessed by both seismocardiography at rest and sub-maximal exercise testing, in order for acceptability of both to be compared across multiple domains.

View Article and Find Full Text PDF

Infectious diseases pose significant challenges to Norwegian Atlantic salmon aquaculture. Vaccines are critical for disease prevention; however, a deeper understanding of the immune system is essential to improve vaccine efficacy. Immunoglobulin M (IgM) is the main antibody involved in the systemic immune response of teleosts, including Atlantic salmon.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!