Agonist-dependent internalization of the human melanocortin-4 receptors in human embryonic kidney 293 cells.

J Pharmacol Exp Ther

Small Molecule Drug Discovery, Chiron Corporation, 4560 Horton St., Emeryville, CA 94608-2916, USA.

Published: December 2003

A chimeric protein comprised of melanocortin-4 receptor (MC4R) and the green fluorescent protein (GFP) was created for studying receptor/ligand localization and trafficking. The ligand binding affinities and second messenger stimulation induced by MC4R-GFP closely resembled those of the wild-type receptor, suggesting functional integrity of the chimeric protein. As observed with a confocal microscope, in human embryonic kidney (HEK)-293 cells MC4R/GFP was distributed evenly along the cell membrane. Addition of [Nle4-d-Phe7]-alpha-melanocyte-stimulating hormone (NDP-MSH), a peptide MC4R agonist, induced receptor translocation into intracellular compartments in a time- and concentration-dependent manner. [Ac-Nle-c[Asp-His-d-Nal(2')-Arg-Trp-Lys]-NH2] (SHU9119), a potent MC4R antagonist, completely inhibited NDP-MSH-mediated internalization. MC4R-GFP internalization was unaffected by a protein kinase A inhibitor N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H89), but was impaired by pretreatment with inhibitors of endocytosis through clathrin-coated pits, hypertonic sucrose, or concanavalin A. Time-dependent colocalization of MC4R-GFP with rhodamine-transferrin, an early endosome marker, and with LysoTraker, a lysosome marker, was observed after short-term (45 min) and prolonged (20 h) agonist exposure, respectively. Rhodamine-[AcNle-c[Asp-His-d-Phe-Arg-Trp-Lys]-NH2] (MTII), a fluorescent derivative of an MC4R agonist, was found to cointernalize with MC4R-GFP into intracellular vesicles. No significant receptor recycling or segregation from the ligand was observed 60 min after removal of the agonist. In contrast, an antagonist rhodamine-Ac-Cys-Glu-His-(d-Nal)-Arg-Trp-Gly-Cys-Pro-Pro-Lys-Asp-NH2 (HS014) bound to and colocalized with MC4R-GFP on the cell surface and did not stimulate receptor internalization. In sum, these results suggest that MC4R is subject to agonist-dependent endocytosis via clathrin-coated pits. Prolonged agonist exposure directs MC4R into lysosomes, possibly for degradation. Receptor and ligand recycling is not efficient for MC4R in HEK-293 cells.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.103.055525DOI Listing

Publication Analysis

Top Keywords

human embryonic
8
embryonic kidney
8
chimeric protein
8
hek-293 cells
8
mc4r agonist
8
endocytosis clathrin-coated
8
clathrin-coated pits
8
prolonged agonist
8
agonist exposure
8
mc4r
7

Similar Publications

Fetal growth restriction (FGR) is characterized by the inability of the fetus to achieve its growth potential due to pathological factors, most commonly impaired placental trophoblast cell function. Currently, effective prevention and treatment methods of FGR are limited. We aimed to explore the pathogenesis of FGR and provide potential strategies for mitigating its occurrence.

View Article and Find Full Text PDF

Genomic imprinting is the parent-of-origin dependent monoallelic expression of genes often associated with regions of germline-derived DNA methylation that are maintained as differentially methylated regions (gDMRs) in somatic tissues. This form of epigenetic regulation is highly conserved in mammals and is thought to have co-evolved with placentation. Tissue-specific gDMRs have been identified in human placenta, suggesting that species-specific imprinting dependent on unorthodox epigenetic establishment or maintenance may be more widespread than previously anticipated.

View Article and Find Full Text PDF

Background: Preimplantation embryos in vivo are exposed to various growth factors in the female reproductive tract that are absent in in vitro embryo culture media. Cell-free fat extract exerts antioxidant, anti-ageing, and ovarian function-promoting effects. However, its effects on embryo quality are yet to be investigated.

View Article and Find Full Text PDF

Epicardium, the most outer mesothelium, exerts crucial functions in fetal heart development and adult heart regeneration. Here we use a three-step manipulation of WNT signalling entwined with BMP and RA signalling for generating a self-organized epicardial organoid that highly express with epicardium makers WT1 and TCF21 from human embryonic stem cells. After 8-days treatment of TGF-beta following by bFGF, cells enter into epithelium-mesenchymal transition and give rise to smooth muscle cells.

View Article and Find Full Text PDF

Transient chemical-mediated epigenetic modulation confers unrestricted lineage potential on human primed pluripotent stem cells.

Sci China Life Sci

January 2025

Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University Health Science Center, Peking University, Beijing, 100191, China.

Human primed pluripotent stem cells are capable of generating all the embryonic lineages. However, their extraembryonic trophectoderm potentials are limited. It remains unclear how to expand their developmental potential to trophectoderm lineages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!