Nitric oxide (NO) is a candidate retrograde messenger in long-term potentiation (LTP). The NO metabolic pathway is expressed in the cerebellar granule cell layer but its physiological role remained unknown. In this paper we have investigated the role of NO in cerebellar mossy fiber-granule cell LTP, which has postsynaptic N-methyl-d-aspartate (NMDA) receptor-dependent induction. Pre- and postsynaptic current changes were simultaneously measured by using extracellular focal recordings, and NO release was monitored with an electrochemical probe in P21 rat cerebellar slices. High-frequency mossy fiber stimulation induced LTP and caused a significant NO release (6.2 +/- 2.8 nM; n = 5) in the granular layer that was dependent on NMDA receptor as well as on nitric oxide synthase (NOS) activation. Preventing NO production by perfusing the NOS inhibitor 100 microM NG-nitro-l-arginine (L-NNA), blocking extracellular NO diffusion by 10 microM MbO2, or inhibiting the NO target guanylyl cyclase (sGC) with 10 microM 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-dione (ODQ) prevented LTP. Moreover, the NO donor 10 microM 2-(N,N-diethylamino)-diazenolate-2-oxide.Na (DEA-NO) induced LTP, which was mutually occlusive with LTP generated by high-frequency stimulation, prevented by ODQ, and insensitive to NMDA channel blockade (50 microM APV + 25 microM 7-Cl-kyn) or interruption of mossy fiber stimulation. Thus NO is critical for LTP induction at the cerebellar mossy fiber-granule cell relay. Interestingly, LTP manipulations were accompanied by consensual changes in the presynaptic current, suggesting that NO acts as a retrograde signal-enhancing presynaptic terminal excitability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.00399.2003 | DOI Listing |
Alzheimers Dement
December 2024
Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA.
Introduction: We investigated whether the cerebellum develops neuropathology that correlates with well-accepted Alzheimer's disease (AD) neuropathological markers and cognitive status.
Methods: We studied cerebellar cytoarchitecture in a cohort (N = 30) of brain donors. In a larger cohort (N = 605), we queried whether the weight of the contents of the posterior fossa (PF), which contains primarily cerebellum, correlated with dementia status.
Cerebellum
December 2024
School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA.
The vestibular processing regions of the cerebellum integrate vestibular information with other sensory modalities and motor signals to regulate balance, gaze stability, and spatial orientation. A class of excitatory glutamatergic interneurons known as unipolar brush cells (UBCs) are highly concentrated within the granule cell layer of these regions. UBCs receive vestibular signals directly from primary vestibular afferents and indirectly from mossy fibers.
View Article and Find Full Text PDFElife
December 2024
Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France.
Granule cells of the cerebellum make up to 175,000 excitatory synapses on a single Purkinje cell, encoding the wide variety of information from the mossy fibre inputs into the cerebellar cortex. The granule cell axon is made of an ascending portion and a long parallel fibre extending at right angles, an architecture suggesting that synapses formed by the two segments of the axon could encode different information. There are controversial indications that ascending axon (AA) and parallel fibre (PF) synapse properties and modalities of plasticity are different.
View Article and Find Full Text PDFMol Autism
December 2024
Department of Pharmacology, Southern Illinois University - School of Medicine, Springfield, IL, 62702, USA.
bioRxiv
November 2024
Laboratory for Computational Motor Control, Dept. of Biomedical Engineering Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA.
When a neuron modulates its firing rate during a movement, we tend to assume that it is contributing to control of that movement. However, null space theory makes the counter-intuitive prediction that neurons often generate spikes not to cause behavior, but to prevent the effects that other neurons would have on behavior. What is missing is a direct way to test this theory in the brain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!