Glucagon-like peptide-1 (GLP-1) elevates the intracellular free calcium concentration ([Ca2+]i) and insulin secretion in a Na+-dependent manner. To investigate a possible role of Na ion in the action of GLP-1 on pancreatic islet cells, we measured the glucose-and GLP-1-induced intracellular Na+ concentration ([Na+]i), [Ca2+]i, and insulin secretion in hamster islet cells in various concentrations of Na+. The [Na+]i and [Ca2+]i were monitored in islet cells loaded with sodium-binding benzofuran isophthalate and fura 2, respectively. In the presence of 135 mM Na+ and 8 mM glucose, GLP-1 (10 nM) strongly increased the [Na+]i, [Ca2+]i, and insulin secretion. In the presence of 13.5 mM Na+, both glucose and GLP-1 increased neither the [Na+]i nor the [Ca2+]i. In a Na+-free medium, GLP-1 and glucose did not increase the [Na+]i. SQ-22536, an inhibitor of adenylate cyclase, and H-89, an inhibitor of PKA, incompletely inhibited the response. In the presence of both 8 mM glucose and H-89, 8-pCPT-2'-O-Me-cAMP, a PKA-independent cAMP analog, increased the insulin secretion and the [Na+]i. Therefore, we conclude that GLP-1 increases the cAMP level via activation of adenylate cyclase, which augments the membrane Na+ permeability through PKA-dependent and PKA-independent mechanisms, thereby increasing the [Ca2+]i and promoting insulin secretion from hamster islet cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpendo.00005.2003 | DOI Listing |
J Atheroscler Thromb
January 2025
Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba.
Diabetes mellitus, particularly type 2 diabetes mellitus (T2DM), is a pervasive chronic disease that affects millions of people worldwide. It predisposes individuals to a range of severe microvascular and macrovascular complications, which drastically impact the patient's quality of life and increase mortality rates owing to various comorbidities. This extensive review explores the intricate pathophysiology underlying diabetic complications, focusing on key mechanisms, such as atherosclerosis, insulin resistance, chronic inflammation, and endothelial dysfunction.
View Article and Find Full Text PDFDiabetes Care
January 2025
Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway.
Objective: In the Diabetes Virus Detection and Intervention trial, antiviral treatment with pleconaril and ribavirin decreased the decline, compared with placebo, in endogenous C-peptide 1 year after diagnosis of type 1 diabetes (T1D) in children and adolescents. This article reports the results 2 and 3 years after diagnosis.
Research Design And Methods: This was a multicenter, randomized, placebo-controlled (1:1) trial of 96 children and adolescents aged 6-15.
Clin Chem Lab Med
January 2025
Pathology & Anatomical Sciences, University of Missouri, Columbia MO, USA.
Objectives: C-peptide is an equimolar by-product of insulin biosynthesis. It is used clinically to assess insulin secretion and differentiate types of diabetes. However, the lack of standardization across assays limits its broader application.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Faculty of Medicine, University of Maribor, Maribor, Slovenia.
Background: The crucial steps in beta cell stimulus-secretion coupling upon stimulation with glucose are oscillatory changes in metabolism, membrane potential, intracellular calcium concentration, and exocytosis. The changes in membrane potential consist of bursts of spikes, with silent phases between them being dominated by membrane repolarization and absence of spikes. Assessing intra- and intercellular coupling at the multicellular level is possible with ever-increasing detail, but our current ability to simultaneously resolve spikes from many beta cells remains limited to double-impalement electrophysiological recordings.
View Article and Find Full Text PDFDiabetes Obes Metab
January 2025
BFA, UMR 8251, CNRS, Team « Biologie et Pathologie du Pancréas Endocrine », Université Paris Cité, Paris, France.
Aims: Down syndrome (DS) or trisomy 21 is the most prevalent genetic disorder in the world. In addition to common symptoms such as intellectual disabilities and morphological abnormalities, several comorbidities are associated with DS, including metabolic dysfunction. Obesity and diabetes are more prevalent in people with DS compared with the general population.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!