Shiga toxin (Stx)-producing Escherichia coli (STEC) is a major cause of sporadic cases of disease as well as serious outbreaks worldwide. The spectrum of illnesses includes mild nonbloody diarrhea, hemorrhagic colitis, and hemolytic-uremic syndrome. STEC produces one or more Stxs, which are subdivided into two major classes, Stx1 and Stx2. The ingestion of contaminated food or water, person-to-person spread, and contact with animals are the major transmission modes. The infective dose of STEC may be less than 100 organisms. Effective prevention of infection is dependent on rapid detection of the causative bacterial pathogen. In the present study, we examined 295 stool specimens for the presence of Stx-producing E. coli by three different methods: an Stx enzyme-linked immunosorbent assay, a conventional PCR assay, and a LightCycler PCR (LC-PCR) assay protocol recently developed by our laboratory at the Institute of Medical Microbiology at Hannover Medical School. Our intent was to compare these three methods and to examine the utility of the STEC LC-PCR protocol in a clinical laboratory. The addition of a control DNA to each sample to clearly discriminate inhibited specimens from negative ones enhanced the accuracy of the LC-PCR protocol. From our results, it can be concluded that LC-PCR is a very useful tool for the rapid and safe detection of STEC in clinical samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC254382PMC
http://dx.doi.org/10.1128/JCM.41.10.4671-4675.2003DOI Listing

Publication Analysis

Top Keywords

shiga toxin
8
enzyme-linked immunosorbent
8
immunosorbent assay
8
escherichia coli
8
stool specimens
8
three methods
8
lc-pcr protocol
8
stec
5
comparison shiga
4
toxin enzyme-linked
4

Similar Publications

Hybrid strains of enterotoxigenic/Shiga toxin-producing , United Kingdom, 2014-2023.

J Med Microbiol

January 2025

NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK.

Diarrhoeagenic (DEC) pathotypes are defined by genes located on mobile genetic elements, and more than one definitive pathogenicity gene may be present in the same strain. In August 2022, UK Health Security Agency (UKHSA) surveillance systems detected an outbreak of hybrid Shiga toxin-producing /enterotoxigenic (STEC-ETEC) serotype O101:H33 harbouring both Shiga toxin () and heat-stable toxin (). These hybrid strains of DEC are a public health concern, as they are often associated with enhanced pathogenicity.

View Article and Find Full Text PDF

In July 2022, a genetically linked and geographically dispersed cluster of 12 cases of Shiga toxin-producing (STEC) O103:H2 was detected by the UK Health Security Agency using whole genome sequencing. Review of food history questionnaires identified cheese (particularly an unpasteurized brie-style cheese) and mixed salad leaves as potential vehicles. A case-control study was conducted to investigate exposure to these products.

View Article and Find Full Text PDF

Shiga toxin-producing Escherichia coli (STEC) infections pose a significant public health challenge, characterized by severe complications including hemolytic uremic syndrome (HUS) due to Shiga toxin (Stx) production. Current therapeutic approaches encounter a critical limitation, as conventional antibiotic treatment is contraindicated due to its propensity to trigger bacterial SOS response and subsequently enhance Stx production, which increases the likelihood of developing HUS in antibiotic-treated patients. The lack of effective, safe therapeutic options has created an urgent need for alternative treatment strategies for STEC infections.

View Article and Find Full Text PDF

In integrated crop-livestock systems, livestock graze on cover crops and deposit raw manure onto fields to improve soil health and fertility. However, enteric pathogens shed by grazing animals may be associated with foodborne pathogen contamination of produce influenced by fecal-soil microbial interactions. We analyzed 300 fecal samples (148 from sheep and 152 from goats) and 415 soil samples (272 from California and 143 from Minnesota) to investigate the effects of grazing and the presence of non-O157 Shiga toxin-producing Escherichia coli (STEC) or generic E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!