The lipodystrophy syndrome (adipose tissue redistribution and metabolic abnormalities) observed with highly active antiretroviral therapy (HAART) during human immunodeficiency virus (HIV) infection may be related to increased proinflammatory cytokine activity. We measured acute cytokine (TNF-alpha, IL-6, leptin), glycerol, and lactate secretion from abdominal subcutaneous adipose tissue (SAT), and systemic cytokine levels, in HIV-infected subjects with and without lipodystrophy (HIVL+ and HIVL-, respectively) and healthy non-HIV controls. Lipodystrophy was confirmed and characterized as adipose tissue redistribution in HIVL+ compared with HIVL- and controls, by dual-energy X-ray absorptiometry and by whole body MRI. TNF-alpha secretion from abdominal SAT and circulating levels of IL-6, soluble TNF receptors I and II, and insulin were elevated in HIVL+ relative to HIVL- and/or controls, particularly in HIVL+ undergoing HAART. In the HIV-infected group as a whole, IL-6 secretion from abdominal SAT and serum IL-6 were positively associated with visceral fat and were negatively associated with the relative amount of lower limb adipose tissue (P < 0.01). Decreased leptin and increased lactate secretion from abdominal SAT were specifically associated with HAART. In conclusion, increased cytokine secretion from adipose tissue and increased systemic proinflammatory cytokine activity may play a significant role in the adipose tissue remodeling and/or the metabolic abnormalities associated with the HIV-lipodystrophy syndrome in patients undergoing HAART.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpendo.00056.2003 | DOI Listing |
PLoS Biol
January 2025
Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan.
The unique architecture of the liver consists of hepatic lobules, dividing the hepatic features of metabolism into 2 distinct zones, namely the pericentral and periportal zones, the spatial characteristics of which are broadly defined as metabolic zonation. R-spondin3 (Rspo3), a bioactive protein promoting the Wnt signaling pathway, regulates metabolic features especially around hepatic central veins. However, the functional impact of hepatic metabolic zonation, regulated by the Rspo3/Wnt signaling pathway, on whole-body metabolism homeostasis remains poorly understood.
View Article and Find Full Text PDFDiabetes
January 2025
Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
The homeobox (HOX) family has shown potential in adipose development and function, yet the specific HOX proteins fueling adipose thermogenesis remain elusive. In this study, we uncovered the novel function of HOXC4 in stimulating adipose thermogenesis. Our bioinformatic analysis indicated an enrichment of Hoxc4 co-expressed genes in metabolic pathways and linked HOXC4 polymorphisms to metabolic parameters, suggesting its involvement in metabolic regulation.
View Article and Find Full Text PDFAnnu Rev Pathol
January 2025
Diabetes Center and Department of Laboratory Medicine, University of California, San Francisco, California, USA;
The immune system plays fundamental roles in maintaining physiological homeostasis. With the increasing prevalence of obesity-a state characterized by chronic inflammation and systemic dyshomeostasis-there is growing scientific and clinical interest in understanding how obesity reshapes immune function. In this review, we propose that obesity is not merely an altered metabolic state but also a fundamentally altered immunological state.
View Article and Find Full Text PDFFASEB J
January 2025
Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China.
Gestational Diabetes Mellitus (GDM) is the most frequent complication during pregnancy. Pharmacological interventions, such as peptide drugs that focused on improving the insulin sensitivity might be promising in the prevention and treatment of GDM. In this study, we aimed to investigate the role and mechanism of a novel peptide, named AGDMP1 (Anti-GDM peptide 1), which we previously identified lower in the serum of GDM patients using mass spectrometry, on the adipose insulin resistance in GDM.
View Article and Find Full Text PDFJ Cell Physiol
January 2025
Department of Spine, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China.
In this study, we explored the impact of different biomechanical loadings on lumbar spine motion segments, particularly concerning intervertebral disc degeneration (IVDD). We aimed to uncover the cellular milieu and mechanisms driving ossification in the nucleus pulposus (NP) during IVDD, a process whose underlying mechanisms have remained elusive. The study involved the examination of fresh NP tissue from the L3-S1 segment of five individuals, either with IVDD or healthy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!