A locus encoding two repetitive proteins that have LPXTG cell wall anchoring signals from Lactobacillus fermentum BR11 has been identified by using an antiserum raised against whole L. fermentum BR11 cells. The first protein, Rlp, is similar to the Rib surface protein from Streptococcus agalactiae, while the other protein, Mlp, is similar to the mucus binding protein Mub from Lactobacillus reuteri. It was shown that multiple copies of mlp exist in the genome of L. fermentum BR11. Regions of Rlp, Mlp, and the previously characterized surface protein BspA were used to surface display or secrete heterologous peptides in L. fermentum. The peptides tested were 10 amino acids of the human cystic fibrosis transmembrane regulator protein and a six-histidine epitope (His(6)). The BspA promoter and secretion signal were used in combination with the Rlp cell wall sorting signal to express, export, and covalently anchor the heterologous peptides to the cell wall. Detection of the cell surface protein fusions revealed that Rlp was a significantly better surface display vector than BspA despite having lower cellular levels (0.7 mg per liter for the Rlp fusion compared with 4 mg per liter for the BspA fusion). The mlp promoter and encoded secretion signal were used to express and export large (328-kDa at 10 mg per liter) and small (27-kDa at 0.06 mg per liter) amino-terminal fragments of the Mlp protein fused to the His(6) and CFTR peptides or His(6) peptide, respectively. Therefore, these newly described proteins from L. fermentum BR11 have potential as protein production and targeting vectors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC201189PMC
http://dx.doi.org/10.1128/AEM.69.10.5855-5863.2003DOI Listing

Publication Analysis

Top Keywords

fermentum br11
20
surface display
12
cell wall
12
surface protein
12
protein
9
lactobacillus fermentum
8
heterologous peptides
8
secretion signal
8
signal express
8
express export
8

Similar Publications

In lactobacilli the aggregation phenotype is linked to their ability to colonize the intestinal and urogenital tracts and to counteract pathogenic bacteria. In all available complete genome sequences of Lactobacillus delbrueckii ssp. bulgaricus there are at least two genes putatively related to aggregation, one of which is annotated as aggregation-promoting factor (apf).

View Article and Find Full Text PDF

Certain live bacteria have demonstrated preliminary indications of efficacy for the treatment of chemotherapy-induced intestinal mucositis. However, probiotic derived supernatants (SN) have yet to be investigated in the mucositis setting. We evaluated SN from Escherichia coli Nissle 1917 (EcN) and Lactobacillus fermentum BR11 (BR11) for their capacity to decrease 5-Fluorouracil (5-FU)-induced damage in vivo.

View Article and Find Full Text PDF

Although probiotics are beginning to enter mainstream medicine for disorders of the colon, their effects on the small bowel remain largely unexplored. We investigated the recently identified probiotic, Lactobacillus fermentum (L. fermentum) BR11 (BR11) and the prebiotic, fructo-oligosaccharide (FOS), both individually and in synbiotic combination, for their potential to alleviate intestinal mucositis.

View Article and Find Full Text PDF

The dextran sulfate sodium (DSS) colitis model has been utilized to screen for novel therapeutics for ulcerative colitis. Evidence suggests the small intestine may also be affected by DSS. We characterized the effects of DSS on the small intestine and assessed the potential for Lactobacillus fermentum BR11 to modify or normalize DSS-induced changes.

View Article and Find Full Text PDF

Opposing effects of the prebiotic, fructooligosaccharide, have been reported in experimental colitis. We compared the effects of the prebiotic, fructooligosaccharide, alone and in synbiotic combination with Lactobacillus fermentum BR11, on the development of dextran sulfate sodium-induced colitis in rats. Rats consumed an 18 percent casein-based diet or diet supplemented with 6 percent fructooligosaccharide or maltodextrin for 14 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!