The absorption, disposition and metabolism of levetiracetam, a new antiepileptic drug, have been investigated after a single oral dose of the (14)C-labelled molecule administered to male healthy volunteers. As chiral inversion can occur during drug metabolism, the chiral inversion of levetiracetam and/or of its major metabolite produced by hydrolysis (the corresponding acid) was also investigated. Finally, the in vitro hydrolysis of levetiracetam to its major metabolite and the inhibition of this reaction in human blood have been studied. Levetiracetam was very rapidly absorbed in man, with the peak plasma concentration of the unchanged drug occurring at 0.25-0.50 h. The unchanged drug accounted for a very high percentage of plasma radioactivity (97-82%) at all the times measured, i.e. until 48 h after administration. The apparent volume of distribution of the compound was close (0.55-0.62 l/kg) to the volume of total body water. Total body clearance (0.80-0.97 ml/min/kg) was much lower than the nominal hepatic blood flow. The plasma elimination half-life of the unchanged drug varied between 7.4 h and 7.9 h. Plasma to blood ratio of total radioactivity concentrations was 1.1-1.3, showing that radioactivity concentrations were similar in blood cells and plasma. The balance of excretion was very high in all four volunteers. The predominant route of excretion was via urine, accounting for a mean of 95% of the administered dose after 4 days. Two major radioactive components were present in urine, the unchanged drug and the acid obtained by hydrolysis, accounting for 66% and 24% of the dose after 48 h, respectively. Hydrolysis of levetiracetam in human blood followed Michaelis-Menten kinetics with Km and V(max) values of 435 microM and 129 pmol/min/ml blood, respectively. Among the inhibitory agents investigated in this study, only paraoxon inhibited levetiracetam hydrolysis (92% inhibition at 100 microM). Oxidative metabolism occurred in man, although it accounted for no more than 2.5% of the dose. There was no evidence of chiral inversion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00228-003-0655-6 | DOI Listing |
Alzheimers Dement
December 2024
University of Utah, Salt Lake City, UT, USA.
Background: Neurodegenerative disorders such as Alzheimer's Disease (AD) are increasingly associated with irregular lipid accumulation. Dysfunction in the catabolism of sphingolipids leads to many neurodegenerative disorders but has only recently garnered interest in AD. Excess ceramide deposition has been observed in Aβ-plaques, plasma, and cerebrospinal fluid in AD patients and AD mouse models.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil.
Background: Aging is a natural, irreversible process that can be successful or pathological, resulting in chronic degenerative diseases such as Alzheimer's disease. Low levels of estrogen characterize menopause. Research reveals that the lack of these hormones may be related to dementia and that vitamin D (vit D), when supplemented, has a neuroprotective and neuromodulator effect.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Buenos Aires, Buenos Aires, Argentina.
Background: Variations in the circadian rhythm in older adults can negatively affect brain and cardiovascular health. As a consequence, poor cognitive functioning, an increase in the inflammatory response, alterations in sleep patterns, changes in mood and a decrease in motivation, energy and initiative are observed.
Method: We retrospectively examined the initial and final neuropsychological assessment of 250 MCI outpatients, 125 of whom had received daily 3-9 mg of a fast-release melatonin preparation p.
Physiol Rep
January 2025
Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
Sympathoexcitation is a hallmark of heart failure, with sustained β-adrenergic receptor (βAR)-G protein signaling activation. βAR signaling is modulated by regulator of G protein signaling (RGS) proteins. Previously, we reported that Gα regulation by RGS2 or RGS5 is key to ventricular rhythm regulation, while the dual loss of both RGS proteins results in left ventricular (LV) dilatation and dysfunction.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany.
Introduction: Multiple myeloma (MM) is an uncontrolled plasma cell proliferation in the bone marrow, leading to immune dysregulation with impaired humoral immune responses. Conversely, cellular-based responses play a vital role in MM patients. However, the extent and duration of cellular-induced protection remain unclear to date.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!