A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of fexofenadine and other antihistamines on components of the allergic response: adhesion molecules. | LitMetric

Intercellular adhesion molecules (ICAMs), in particular ICAM-1, appear to play a crucial role in the recruitment and migration of inflammatory cells to the site of an allergic reaction. Glucocorticoids and allergen-specific immunotherapy have been shown to exert effects on selected components of this system, both in vitro and in vivo, but further research is required to better understand the effects of these therapies. Nasal and conjunctival challenge models (including natural and experimental allergen exposure) represent useful and safe tools for studying the activity of antiallergy drugs in vivo. These tests allow the investigation of a wide variety of parameters including inflammatory infiltrate, ICAM-1 expression, and changes in the concentration of soluble inflammatory mediators. With these tools, anti-inflammatory activity related to the modulation of epithelial cell adhesion molecules has been demonstrated in vivo for several H(1)-receptor antagonists (azelastine, cetirizine, loratadine, levocabastine, oxatomide, and terfenadine). Fexofenadine is a nonsedating, long-acting antihistamine with highly selective H(1)-receptor antagonist activity and a particularly favorable safety profile. In addition, fexofenadine has proven anti-inflammatory activity and has been shown to inhibit a number of mediators at clinically relevant concentrations, including in vitro inhibition of ICAM-1 expression on conjunctival and nasal epithelial cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0091-6749(03)01880-3DOI Listing

Publication Analysis

Top Keywords

adhesion molecules
12
icam-1 expression
8
anti-inflammatory activity
8
effects fexofenadine
4
fexofenadine antihistamines
4
antihistamines components
4
components allergic
4
allergic response
4
response adhesion
4
molecules intercellular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!