Proteins in cerebrospinal fluid and blood: barriers, CSF flow rate and source-related dynamics.

Restor Neurol Neurosci

Neurochemisches Labor der Neurologischen Klinik, Robert-Koch-Str. 40, Universität Göttingen, D - 37075 Göttingen, Germany.

Published: January 2004

Cerebrospinal fluid (CSF) routine analysis for diagnosis of neurological diseases is based on the concepts for discrimination of blood-derived and brain-derived immunoglobulin fractions in CSF. The actual molecular flux/CSF flow theory of the blood/CSF barrier function, which founded the hyperbolic discrimination lines in quotient diagrams, is derived from the laws of molecular diffusion combined with CSF flow rate. It emerged from this theory that the decrease of CSF flow rate is sufficient to explain quantitatively the increase of CSF protein concentrations as observed in many neurological diseases. With this concept of CSF flow rate as the modulator of the normal and pathological blood-CSF barrier function, we got for the first time a theoretical frame work to explain also quantitatively the dynamics of brain-derived proteins and their source related (neurons and glial cells or leptomeningal cells) differences. The review of the anatomical, physiological and biophysical knowledge points to the new interpretations: The changing albumin quotient is an indicator of changing CSF flow rate and not for a morphological "leakage" of the blood-brain barrier. As an application of these concepts the dynamics of brain-derived molecules in blood are discussed with two examples: beta trace protein, flowing with CSF into venous blood, and neuron-specific enolase, passing from tissue into blood the opposite direction of serum proteins, again a gradient-dependent protein diffusion across the intact blood vessel wall.

Download full-text PDF

Source

Publication Analysis

Top Keywords

csf flow
20
flow rate
20
csf
9
cerebrospinal fluid
8
neurological diseases
8
barrier function
8
explain quantitatively
8
dynamics brain-derived
8
flow
6
blood
5

Similar Publications

Rheumatoid arthritis (RA), an autoimmune disease with complex pathogenesis, is characterized by an immune imbalance reflected, e.g., in the disturbed cytokines' profile.

View Article and Find Full Text PDF

The prognosis of adult T-cell leukemia/lymphoma (ATL) with primary central nervous system (CNS) involvement has been unclear since the advent of new therapies. Recently, we have shown that flow cytometric CD7/CADM1 analysis of CD4 + cells (HAS-Flow) is useful to detect ATL cells that are not morphologically diagnosed as ATL cells. We investigated the role of CNS involvement in ATL using cytology and HAS-Flow by analyzing cerebrospinal fluid (CSF) from 73 aggressive ATL cases.

View Article and Find Full Text PDF

Norepinephrine-mediated slow vasomotion drives glymphatic clearance during sleep.

Cell

December 2024

Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen N, Denmark; Center for Translational Neuromedicine, University of Rochester, Rochester, NY 14627, USA. Electronic address:

As the brain transitions from wakefulness to sleep, processing of external information diminishes while restorative processes, such as glymphatic removal of waste products, are activated. Yet, it is not known what drives brain clearance during sleep. We here employed an array of technologies and identified tightly synchronized oscillations in norepinephrine, cerebral blood volume, and cerebrospinal fluid (CSF) as the strongest predictors of glymphatic clearance during NREM sleep.

View Article and Find Full Text PDF

Background: According to the model of the glymphatic system, the directed flow of cerebrospinal fluid (CSF) is a driver of waste clearance from the brain. In sleep, glymphatic transport is enhanced, but it is unclear how it is affected by anesthesia. Animal research indicates partially opposing effects of distinct anesthetics but corresponding results in humans are lacking.

View Article and Find Full Text PDF

Background/objectives: Cerebrospinal infusion studies indicate that cerebrospinal fluid outflow resistance (R) is elevated in normal pressure hydrocephalus (NPH). These studies assume that the cerebrospinal formation rate (CSF) does not vary during the infusion. If the CSF were to increase during the infusion then the R would be overestimated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!