Single molecule genotyping of the hypermutable microsatellite locus D21S1245 was used for studying how the rate and pattern of mutation varied between alleles and different age groups. In total, 203 mutation events were scored from the genotyping of DNA corresponding to an estimated 8623 sperm cells from eight different men. Allele-specific mutation rates ranged from 0.007 to 0.052, a heterogeneity related in part to variation in the mutation rate among three allelic lineages identified after allele sequencing. Alleles from these lineages differed in the overall repeat structure of this complex microsatellite locus. Also, the pattern of mutation varied between lineages in that they differed in the relative proportions of expansion and contraction mutations. Surprisingly, a group of four men aged 18-23 years showed a higher mean mutation rate than a group of four men aged 48-56 years. To some extent this age difference can probably be explained by a bias in the distribution of alleles from the three allelic lineages among the age groups. However, the absence of a clear male age effect is at odds with the idea of an increasing male mutation rate with age, which is thought to arise from the continuous replication of germline cells throughout adulthood.

Download full-text PDF

Source
http://dx.doi.org/10.1093/molbev/msg242DOI Listing

Publication Analysis

Top Keywords

pattern mutation
12
mutation rate
12
locus d21s1245
8
mutation
8
clear male
8
male age
8
microsatellite locus
8
mutation varied
8
age groups
8
three allelic
8

Similar Publications

Recent studies suggest that lung adenocarcinoma cells are closely associated with the tumorigenesis of large-cell neuroendocrine carcinoma via cellular transformation. However, morphological evidence, along with genetic abnormalities before, during, and after transformation, is quite limited. We present here a case of combined large-cell neuroendocrine carcinoma and adenocarcinoma exhibiting acinar and solid patterns.

View Article and Find Full Text PDF

Unlabelled: has numerous two-component signaling systems (TCSs), many of which regulate the complex social behaviors of this soil bacterium. A subset of TCSs consists of NtrC-like response regulators (RRs) and their cognate histidine sensor kinases (SKs). We have previously demonstrated that a multi-component, phosphorelay TCS named NmpRSTU plays a role in social motility.

View Article and Find Full Text PDF

High-grade serous carcinomas (HGSCs) with homologous recombination deficiency (HRD) respond favorably to platinum therapy and poly ADP ribose polymerase (PARP) inhibitors. Mutations in BRCA1 and BRCA2 commonly cause HRD and have been associated with Solid, pseudoEndometrioid, and Transitional-like (SET-like) histology. Mutations in other homologous recombination repair (HRR) genes as well as epigenetic changes can also result in HRD; however, morphologic correlates have not been well-explored in these cases.

View Article and Find Full Text PDF

Unlabelled: Autism Spectrum Disorder (ASD) is characterized by restricted and repetitive behaviors and social differences, both of which may manifest, in part, from underlying differences in corticostriatal circuits and reinforcement learning. Here, we investigated reinforcement learning in mice with mutations in either or , both high-confidence ASD risk genes associated with major syndromic forms of ASD. Using an odor-based two-alternative forced choice (2AFC) task, we tested adolescent mice of both sexes and found male and heterozygote (Het) mice showed enhanced learning performance compared to their wild type (WT) siblings.

View Article and Find Full Text PDF

Unlabelled: SYNGAP1 is a key Ras-GAP protein enriched at excitatory synapses, with mutations causing intellectual disability and epilepsy in humans. Recent studies have revealed that in addition to its role as a negative regulator of G-protein signaling through its GAP enzymatic activity, SYNGAP1 plays an important structural role through its interaction with post-synaptic density proteins. Here, we reveal that intrinsic excitability deficits and seizure phenotypes in heterozygous Syngap1 knockout (KO) mice are differentially dependent on Syngap1 GAP activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!