Discrimination between cognate and non-cognate tRNAs by aminoacyl-tRNA synthetases occurs at several steps of the aminoacylation pathway. We have measured changes of solvation and counter-ion distribution at various steps of the aminoacylation pathway of glutamyl- and glutaminyl-tRNA synthetases. The decrease in the association constant with increasing KCl concentration is relatively small for cognate tRNA binding when compared to known DNA-protein interactions. The electro-neutral nature of the tRNA binding domain may be largely responsible for this low ion release stoichiometry, suggesting that a relatively large electrostatic component of the DNA-protein interaction free energy may have evolved for other purposes, such as, target search. Little change in solvation upon tRNA binding is seen. Non-cognate tRNA binding actually increases with increasing KCl concentration indicating that charge repulsion may be a significant component of binding free energy. Thus, electrostatic interactions may have been used to discriminate between cognate and non-cognate tRNAs in the binding step. The catalytic constant of glutaminyl-tRNA synthetase increases with increasing osmotic pressure indicating a water release of 8.4 +/- 1.4 mol/mol in the transition state, whereas little change is seen in the case of glutamyl-tRNA synthetase. We propose that the significant amount of water release in the transition state, in the case of glutaminyl-tRNA synthetase, is due to additional contact of the protein with the tRNA in the transition state.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC219465 | PMC |
http://dx.doi.org/10.1093/nar/gkg779 | DOI Listing |
EMBO J
January 2025
Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK.
Elongator is a tRNA-modifying complex that regulates protein translation. Recently, a moonlighting function of Elongator has been identified in regulating the polarization of the microtubule cytoskeleton during asymmetric cell division. Elongator induces symmetry breaking of the anaphase midzone by selectively stabilizing microtubules on one side of the spindle, contributing to the downstream polarized segregation of cell-fate determinants, and therefore to cell fate determination.
View Article and Find Full Text PDFMed Chem
January 2025
Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune 70000, Morocco.
Background: Oxidative stress is strongly linked to neurodegeneration through the activation of c-Abl kinase, which arrests α-synuclein proteolysis by interacting with parkin interacting substrate (PARIS) and aminoacyl tRNA synthetase complex-interacting multifunctional protein 2 (AIMP2). This activation, triggered by ataxia-telangiectasia mutated (ATM) kinase, leads to dopaminergic neuron loss and α-synuclein aggregation, a critical pathophysiological aspect of Parkinson's disease (PD). To halt PD progression, pharmacological inhibition of c-Abl kinase is essential.
View Article and Find Full Text PDFJ Genet Genomics
January 2025
National Engineering Laboratory of Crop Stress Resistance, College of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China. Electronic address:
Mitochondria are semi-autonomous organelle present in eukaryotic cells, containing their own genome and transcriptional machinery. However, their functions are intricately linked to proteins encoded by the nuclear genome. Mitochondrial transcription termination factors (mTERFs) are nucleic acid-binding proteins involved in RNA splicing and transcription termination within plant mitochondria and chloroplasts.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Pathogenesis and Control of Pathogenic Microorganisms Research Team, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China.
The trans-translation system, mediated by transfer-messenger RNA (tmRNA, encoded by the gene) and its partner protein SmpB, helps to release ribosomes stalled on defective mRNA and targets incomplete protein products for hydrolysis. Knocking out the and genes in various pathogens leads to different phenotypic changes, indicating that they have both cooperative and independent functionalities. This study aimed to clarify the functional relationships between tmRNA and SmpB in a pathogen that poses threats in aquaculture and human health.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Vavilov Institute of General Genetics Russian Academy of Sciences, 119333 Moscow, Russia.
The size of viral genomes is limited, thus the majority of encoded proteins possess multiple functions. The main function of tobamoviral movement protein (MP) is to perform plasmodesmata gating and mediate intercellular transport of the viral RNA. MP is a remarkable example of a protein that, in addition to the initially discovered and most obvious function, carries out numerous activities that are important both for the manifestation of its key function and for successful and productive infection in general.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!