Maltose-binding protein (MBP) is a two-domain protein that undergoes a ligand-mediated conformational rearrangement from an "open" to a "closed" structure on binding to maltooligosaccharides. To characterize the energy landscape associated with this transition, we have generated five variants of MBP with mutations located in the hinge region of the molecule. Residual dipolar couplings, measured in the presence of a weak alignment medium, have been used to establish that the average structures of the mutant proteins are related to each other by domain rotation about an invariant axis, with the rotation angle varying from 5 degrees to 28 degrees. Additionally, the domain orientations observed in the wild-type apo and ligand-bound (maltose, maltotriose, etc.) structures are related through a rotation of 35 degrees about the same axis. Remarkably, the free energy of unfolding, measured by equilibrium denaturation experiments and monitored by fluorescence spectroscopy, shows a linear correlation with the rotation angle, with the stability of the (apo)protein decreasing with domain closure by 212 +/- 16 cal mol-1 per degree of rotation. The apparent binding energy for maltose also shows a similar correlation with the interdomain angle, suggesting that the mutations, as they relate to binding, affect predominantly the ligand-free structure. The linearity of the energy change is interpreted in terms of an increase in the extent of hydrophobic surface that becomes solvent accessible on closure. The combination of structural, stability, and binding data allows separation of the energetics of domain reorientation from ligand binding. This work presents a near quantitative structure-energy-binding relationship for a series of mutants of MBP, illustrating the power of combined studies involving protein engineering and solution NMR spectroscopy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC240681 | PMC |
http://dx.doi.org/10.1073/pnas.2134311100 | DOI Listing |
Sci Rep
March 2025
Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, Toulouse, France.
Cytochrome P450 1A2, as many isoenzymes, can generate multiple metabolites from a single substrate. A loose coupling between substrate binding and oxygen activation makes possible substrate reorientations at the active site prior to catalysis. In the present work, caffeine oxidation to alternative bioactive compounds was used to decipher this pluripotency.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2025
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8103.
Myosin-IC (myo1c) is a class-I myosin that supports transport and remodeling of the plasma membrane and membrane-bound vesicles. Like other members of the myosin family, its biochemical kinetics are altered in response to changes in mechanical loads that resist the power stroke. However, myo1c is unique in that the primary force-sensitive kinetic transition is the isomerization that follows ATP binding, not ADP release as in other slow myosins.
View Article and Find Full Text PDFPsychol Med
February 2025
Orygen, Parkville, VIC, Australia.
Background: Diagnosis in psychiatry faces familiar challenges. Validity and utility remain elusive, and confusion regarding the fluid and arbitrary border between mental health and illness is increasing. The mainstream strategy has been conservative and iterative, retaining current nosology until something better emerges.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
National Joint Research Center on Biomedical Photodynamic Technology, Fuzhou University, Fuzhou, Fujian 350108, China.
The DdmDE antiplasmid system, consisting of the helicase-nuclease DdmD and the prokaryotic Argonaute (pAgo) protein DdmE, plays a crucial role in defending Vibrio cholerae against plasmids. Guided by DNA, DdmE specifically targets plasmids, disassembles the DdmD dimer, and forms a DdmD-DdmE handover complex to facilitate plasmid degradation. However, the precise ATP-dependent DNA translocation mechanism of DdmD has remained unclear.
View Article and Find Full Text PDFACS Nano
February 2025
TUD-KIT Joint Research Laboratory Nanomaterials, Technische Universität Darmstadt, 64287 Darmstadt, Germany.
Unraveling the mechanism behind bulk perpendicular magnetic anisotropy (PMA) in amorphous rare earth-transition metal films has proven challenging. This is largely due to the inherent complexity of the amorphous structure and the entangled potential origins arising from microstructure and atomic structure factors. Here, we present an approach wherein the magneto-electric effect is harnessed to induce 90° switching of bulk PMA in Tb-Co films to in-plane directions by applying voltages of only -1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!