Background: Previous genomic studies with human tissues have compared differential gene expression between 2 conditions (ie, normal versus diseased) to identify altered gene expression in a binary manner; however, a potentially more informative approach is to correlate the levels of gene expression with quantitative physiological parameters.

Methods And Results: In this study, we have used this approach to examine genes whose expression correlates with arterial stiffness in human aortic specimens. Our data identify 2 distinct groups of genes, those associated with cell signaling and those associated with the mechanical regulation of vascular structure (cytoskeletal-cell membrane-extracellular matrix). Although previous studies have concentrated on the contribution of the latter group toward arterial stiffness, our data suggest that changes in expression of signaling molecules play an equally important role. Alterations in the profiles of signaling molecules could be involved in the regulation of cell cytoskeletal organization, cell-matrix interactions, or the contractile state of the cell.

Conclusions: Although the influence of smooth muscle contraction/relaxation on arterial stiffness could be controversial, our provocative data would suggest that further studies on this subject are indicated.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.CIR.0000091407.86925.7ADOI Listing

Publication Analysis

Top Keywords

gene expression
16
arterial stiffness
16
signaling molecules
8
expression
6
physiological genomics
4
genomics human
4
human arteries
4
arteries quantitative
4
quantitative relationship
4
gene
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!