Fanconi anemia (FA) is an autosomal recessive disease characterized by progressive bone marrow failure due to defective stem cell function. FA patients' cells are hypersensitive to DNA cross-linking agents such as mitomycin C (MMC), exposure to which results in cytogenetic aberrations and cell death. To date Moloney murine leukemia virus vectors have been used in clinical gene therapy. Recently, third-generation lentiviral vectors based on the HIV-1 genome have been developed for efficient gene transfer to hematopoietic stem cells. We generated a self-inactivating lentiviral vector expressing the FA group A cDNA driven by the murine stem cell virus U3 LTR promoter and used the vector to transduce side-population (SP) cells isolated from bone marrow of Fanconi anemia group A (Fanca) knockout mice. One thousand transduced SP cells reconstituted the bone marrow of sublethally irradiated Fanca recipient mice. Phenotype correction was demonstrated by stable hematopoiesis following MMC challenge. Using real-time PCR, one proviral vector DNA copy per cell was detected in all lineage-committed cells in the peripheral blood of both primary and secondary recipients. Our results suggest that the lentiviral vector transduces stem cells capable of self-renewal and long-term hematopoiesis in vivo and is potentially useful for clinical gene therapy of FA hematopoietic cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1525-0016(03)00223-5DOI Listing

Publication Analysis

Top Keywords

fanconi anemia
12
stem cells
12
lentiviral vector
12
bone marrow
12
phenotype correction
8
anemia group
8
hematopoietic stem
8
cells
8
stem cell
8
clinical gene
8

Similar Publications

Classical radiation biology as we understand it clearly identifies genomic DNA as the primary target of ionizing radiation. The evidence appears rock-solid: ionizing radiation typically induces DSBs with a yield of ~30 per cell per Gy, and unrepaired DSBs are a very cytotoxic lesion. We know very well the kinetics of induction and repair of different types of DNA damage in different organisms and cell lines.

View Article and Find Full Text PDF

UBL5 and Its Role in Viral Infections.

Viruses

December 2024

Key Laboratory of Biosafety Defense (Naval Medical University), Ministry of Education, Naval Medical University (Second Military Medical University), Shanghai 200433, China.

Unlike other ubiquitin-like family members, UBL5 is structurally and functionally atypical, and a novel role in various biological processes and diseases has been discovered. UBL5 can stabilize the structure of the spliceosome, can promote post-transcriptional processing, and has been implicated in both DNA damage repair and protein unfolding reactions, as well as cellular mechanisms that are frequently exploited by viruses for their own proliferation during viral infections. In addition, UBL5 can inhibit viral infection by binding to the non-structural protein 3 of rice stripe virus and mediating its degradation.

View Article and Find Full Text PDF

Background/objectives: The enzyme ubiquitin-specific protease 44 (USP44) is a deubiquitinating enzyme with identified physiological roles as a tumor suppressor and an oncogene. While some binding partners and substrates are known for USP44, the identification of other interactions may improve our understanding of its role in cancer. We therefore performed a proximity biotinylation study that identified products of several known cancer genes that are associated with USP44, including a novel interaction between BRCA2 and USP44.

View Article and Find Full Text PDF

Unlabelled: Inherited Bone Marrow Failure syndromes account for approximately 25% of cases of aplastic anemia in pediatric patients. Next-generation sequencing (NGS) technologies have allowed the diagnosis of an increasing number of hereditary causes of bone marrow failure.

Objective: To determine the diagnostic yield and clinical concordance of NGS in the diagnosis of a cohort of pediatric patients with bone marrow failure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!