Hydrocarbons were the major lipid class extracted by hexane from the vitelline membrane surface of dechorionated eggs of the house fly, Musca domestica, the New World screwworm, Cochliomyia hominivorax, the secondary screwworm, Cochliomyia macellaria, the green bottle fly, Phaenicia sericata, the sheep blow fly, Lucilia cuprina and the Mexican fruit fly, Anastrepha ludens. The length of time the embryos must be exposed to hexane with or without a small amount of alcohol in order to attain permeability was species-dependant. Long-chain n-alkanes comprised the major lipid class removed from vitelline membranes of all species except A. ludens where 2-methylalkanes were the major class. The range in size by the total number of carbon atoms in the hydrocarbons was: C23-C49 in C. hominivorax, C27-C33 in C. macellaria, C24-C35 in L. cuprina, C25-C36 in M. domestica, C25-C33 in P. sericata and C21-C51 in A. ludens. The major hydrocarbon component, expressed as percent of the total hydrocarbons, was n-nonacosane (C29) in C. hominivorax (40%), C. macellaria (43%), L. cuprina (38%), M. domestica (39%) and P. sericata (60%). However, in A. ludens, 2-methyloctacosane (32%) was the major hydrocarbon. Unsaturated hydrocarbons, monoenes (16%) and dienes (11%), were abundant only in A. ludens. Since prior studies indicated that the length of time the embryos must be exposed to hexane with or without a small amount of alcohol in order to attain permeability is species dependant, we suggest that the differences in hydrocarbon composition may contribute to this variation in lipid extractability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1096-4959(03)00206-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!