Mutations in the ligand-binding and pore domains control exit of glutamate receptors from the endoplasmic reticulum in C. elegans.

Neuropharmacology

Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, 50 Blossom St., Wellman 8, Boston, MA 02114, USA.

Published: November 2003

The abundance of ion channels and neurotransmitter receptors in the plasma membrane is limited by the efficiency of protein folding and subunit assembly in the endoplasmic reticulum (ER). The ER has a quality-control system for monitoring nascent proteins, which prevents incompletely folded and assembled proteins from being transported from the ER. Chaperone proteins identify unfolded and misassembled proteins in the ER via retention motifs that are normally buried at intersubunit contacts or via carbohydrate residues that are attached to misfolded domains. Here, we examined the trafficking of a C. elegans non-NMDA glutamate receptor (GLR-1). We show that mutations in the pore domain (predicted to block ion permeation) and mutations in the ligand-binding domain (predicted to block glutamate binding) both caused a dramatic reduction in the synaptic abundance of GLR-1 and increased retention of GLR-1 in the ER. These results suggest that the structural integrity of the ligand-binding site and the pore domain of GLR-1 are monitored in the ER during the process of quality control.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0028-3908(03)00274-0DOI Listing

Publication Analysis

Top Keywords

mutations ligand-binding
8
endoplasmic reticulum
8
pore domain
8
domain predicted
8
predicted block
8
ligand-binding pore
4
pore domains
4
domains control
4
control exit
4
exit glutamate
4

Similar Publications

Introduction: Adrenergic activation of protein kinase A (PKA) in cardiac muscle targets the sarcolemma, sarcoplasmic reticulum, and contractile apparatus to increase contractile force and heart rate. In the thin filaments of the contractile apparatus, cardiac troponin I (cTnI) Ser22 and Ser23 in the cardiac-specific N-terminal peptide (NcTnI: residues 1 to 32) are the targets for PKA phosphorylation. Phosphorylation causes a 2-3 fold decrease of affinity of cTn for Ca associated with a higher rate of Ca dissociation from cTnC leading to a faster relaxation rate of the cardiac muscle (lusitropy).

View Article and Find Full Text PDF

CXCR4, a chemokine receptor known as Fusin or CD184, spans the outer membrane of various human cells, including leukocytes. This receptor is essential for HIV infection as well as for many vital cellular processes and is implicated to be associated with multiple pathologies, including cancers. This study employs various computational tools to investigate the molecular effects of disease-vulnerable germ-line missense and non-coding SNPs of the CXCR4 gene.

View Article and Find Full Text PDF

Background: The diversity-generating retroelements (DGRs) are a family of genetic elements that can produce mutations in target genes often related to ligand-binding functions, which possess a C-type lectin (CLec) domain that tolerates massive variations. They were first identified in viruses, then in bacteria and archaea from human-associated and environmental genomes. This DGR mechanism represents a fast adaptation of organisms to ever- changing environments.

View Article and Find Full Text PDF

Missense mutations in the EPHA1 receptor tyrosine kinase have been identified in Alzheimer's patients. To gain insight into their potential role in disease pathogenesis, we investigated the effects of four of these mutations. We show that the P460L mutation in the second fibronectin type III (FN2) domain drastically reduces EPHA1 cell surface localization while increasing tyrosine phosphorylation of the cell surface localized receptor.

View Article and Find Full Text PDF

Comprehensive annotation of mutations in hallmark genes insights into structural and functional implications.

Comput Biol Med

December 2024

Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia. Electronic address:

Understanding the multifaceted role of hallmark gene mutations in cancer progression is critical for developing targeted therapies. This study comprehensively analyses 344 hallmark gene mutations by mapping them to their three-dimensional protein structures using PDB data and AlphaFold models. Mutations were classified based on their locations, such as protein interfaces, ligand-binding sites, dimer interfaces, protein-DNA interfaces, and core regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!